zoukankan      html  css  js  c++  java
  • Spark执行失败时的一个错误分析

    错误分析

    堆栈信息中有一个错误信息:Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 264, idc-xx-xx-3-30.d.xx.com, executor 2): java.lang.OutOfMemoryError: Java heap space

    根据提示信息可以得到以下几点

    • stage由一堆task组成,也就是taskset,编号1的task在stage2中失败了4次
    • executor 是实际执行task的节点,编号2的executor发生了Java heap space
    • executor 内存配置的是512M,没有配置 spark.executor.memoryOverhead,spark在计算executor最终需要分配多少内存时有以下机制
    1. 未配置spark.executor.memoryOverhead来直接控制off-heap时(堆外内存,将对象序列化后放在一大块gc不会直接管理的内存中,需要的时候再反序列化使用,就像放到磁盘上一样,此处堆外内存包含了方法区,直接内存,虚拟机栈,本地方法栈)
      realMem = executorMemory[heap] + (executorMemory * 0.10, with minimum of 384)[off-heap]
      2)配置spark.executor.memoryOverhead
      realMem = executorMemory[heap] + memoryOverhead[off-heap]

    readMem表示java进程需要申请的总内存,如果超过container的内存容量,会被直接kill掉

    异常种类

    • OutOfMemoryError: Java heap space,堆内存不足,溢出,需调整--executor-memory
    • OutOfMemoryError: Java permgen space,堆外内存不足,溢出,需调整spark.executor.memoryOverhead

    下述异常属于Java heap space,调整--executor-memory

    RDD的位置,根据MemoryMode可以选择是堆内或堆外

    日志中查看到的异常信息

    : org.apache.spark.SparkException: Job aborted.
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:147)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:121)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:121)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:121)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:101)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
    at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92)
    at org.apache.spark.sql.Dataset.(Dataset.scala:185)
    at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
    at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:592)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
    Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 264, idc-xx-xx-3-30.d.xx.com, executor 2): java.lang.OutOfMemoryError: Java heap space
    at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:778)
    at org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:511)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:270)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:225)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)
    at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:184)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
    at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.hasNext(InMemoryRelation.scala:132)
    at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:215)
    at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
    at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
    at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
    at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
    at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
    at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

    导致异常的代码

    /**
     * @param f file to read the chunks from
     * @return the chunks
     * @throws IOException
     */
    public List<Chunk> readAll(FSDataInputStream f) throws IOException {
      List<Chunk> result = new ArrayList<Chunk>(chunks.size());
      f.seek(offset);
      byte[] chunksBytes = new byte[length];   //778行,分配长为length的byte[]时没有足够的可用内存导致heap space
      f.readFully(chunksBytes);
      // report in a counter the data we just scanned
      BenchmarkCounter.incrementBytesRead(length);
      int currentChunkOffset = 0;
      for (int i = 0; i < chunks.size(); i++) {
        ChunkDescriptor descriptor = chunks.get(i);
        if (i < chunks.size() - 1) {
          result.add(new Chunk(descriptor, chunksBytes, currentChunkOffset));
        } else {
          // because of a bug, the last chunk might be larger than descriptor.size
          result.add(new WorkaroundChunk(descriptor, chunksBytes, currentChunkOffset, f));
        }
        currentChunkOffset += descriptor.size;
      }
      return result ;
    }
  • 相关阅读:
    面向对象编程的三大特性之一:继承与派生
    面向对象编程
    计算器作业(摘要算法)
    模块&包
    文件的查询、修改实例+tag的用法++函数+程序的解耦
    函数闭包与装饰器
    Python开发【第五篇】:Python基础之杂货铺 day14 06
    Python开发【第四篇】:Python基础之函数 day14--08
    文件操作
    第七篇 python基础之函数,递归,内置函数lhf -blogs day14-8
  • 原文地址:https://www.cnblogs.com/windliu/p/10941848.html
Copyright © 2011-2022 走看看