Java并发包(JUC)中提供了很多并发工具,这其中,很多我们耳熟能详的并发工具,譬如ReentrangLock、Semaphore,它们的实现都用到了一个共同的基类--AbstractQueuedSynchronizer,简称AQS。AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。
本章我们就一起探究下这个神奇的东东,并对其实现原理进行剖析理解
基本实现原理
AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。
private volatile int state;//共享变量,使用volatile修饰保证线程可见性
状态信息通过protected类型的getState,setState,compareAndSetState进行操作。
AQS支持两种同步方式:
1.独占式
2.共享式
这样方便使用者实现不同类型的同步组件,独占式如ReentrantLock,共享式如Semaphore,CountDownLatch,组合式的如ReentrantReadWriteLock。总之,AQS为使用提供了底层支撑,如何组装实现,使用者可以自由发挥。
同步器的设计是基于模板方法模式的,一般的使用方式是这样:
1.使用者继承AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放)
2.将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
这其实是模板方法模式的一个很经典的应用。
我们来看看AQS定义的这些可重写的方法:
protected boolean tryAcquire(int arg) : 独占式获取同步状态,试着获取,成功返回true,反之为false
protected boolean tryRelease(int arg) :独占式释放同步状态,等待中的其他线程此时将有机会获取到同步状态;
protected int tryAcquireShared(int arg) :共享式获取同步状态,返回值大于等于0,代表获取成功;反之获取失败;
protected boolean tryReleaseShared(int arg) :共享式释放同步状态,成功为true,失败为false
protected boolean isHeldExclusively() : 是否在独占模式下被线程占用。
关于AQS的使用,我们来简单总结一下:
首先,我们需要去继承AbstractQueuedSynchronizer这个类,然后我们根据我们的需求去重写相应的方法,比如要实现一个独占锁,那就去重写tryAcquire,tryRelease方法,要实现共享锁,就去重写tryAcquireShared,tryReleaseShared;最后,在我们的组件中调用AQS中的模板方法就可以了,而这些模板方法是会调用到我们之前重写的那些方法的。也就是说,我们只需要很小的工作量就可以实现自己的同步组件,重写的那些方法,仅仅是一些简单的对于共享资源state的获取和释放操作,至于像是获取资源失败,线程需要阻塞之类的操作,自然是AQS帮我们完成了。
对于使用者来讲,我们无需关心获取资源失败,线程排队,线程阻塞/唤醒等一系列复杂的实现,这些都在AQS中为我们处理好了。我们只需要负责好自己的那个环节就好,也就是获取/释放共享资源state的姿势T_T。很经典的模板方法设计模式的应用,AQS为我们定义好顶级逻辑的骨架,并提取出公用的线程入队列/出队列,阻塞/唤醒等一系列复杂逻辑的实现,将部分简单的可由使用者决定的操作逻辑延迟到子类中去实现即可。
自定义同步器
上面大概讲了一些关于AQS如何使用的理论性的东西,接下来,我们就来看下实际如何使用,直接采用JDK官方文档中的小例子来说明问题
package juc; import java.util.concurrent.locks.AbstractQueuedSynchronizer; /** * Created by chengxiao on 2017/3/28. */ public class Mutex implements java.io.Serializable { //静态内部类,继承AQS private static class Sync extends AbstractQueuedSynchronizer { //是否处于占用状态 protected boolean isHeldExclusively() { return getState() == 1; } //当状态为0的时候获取锁,CAS操作成功,则state状态为1, public boolean tryAcquire(int acquires) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } //释放锁,将同步状态置为0 protected boolean tryRelease(int releases) { if (getState() == 0) throw new IllegalMonitorStateException(); setExclusiveOwnerThread(null); setState(0); return true; } } //同步对象完成一系列复杂的操作,我们仅需指向它即可 private final Sync sync = new Sync(); //加锁操作,代理到acquire(模板方法)上就行,acquire会调用我们重写的tryAcquire方法 public void lock() { sync.acquire(1); } public boolean tryLock() { return sync.tryAcquire(1); } //释放锁,代理到release(模板方法)上就行,release会调用我们重写的tryRelease方法。 public void unlock() { sync.release(1); } public boolean isLocked() { return sync.isHeldExclusively(); } }
测试下这个自定义的同步器,我们使用之前文章中做过的并发环境下a++的例子来说明问题(a++的原子性其实最好使用原子类AtomicInteger来解决,此处用Mutex有点大炮打蚊子的意味,好在能说明问题就好)
package juc; import java.util.concurrent.CyclicBarrier; /** * Created by chengxiao on 2017/7/16. */ public class TestMutex { private static CyclicBarrier barrier = new CyclicBarrier(31); private static int a = 0; private static Mutex mutex = new Mutex(); public static void main(String []args) throws Exception { //说明:我们启用30个线程,每个线程对i自加10000次,同步正常的话,最终结果应为300000; //未加锁前 for(int i=0;i<30;i++){ Thread t = new Thread(new Runnable() { @Override public void run() { for(int i=0;i<10000;i++){ increment1();//没有同步措施的a++; } try { barrier.await();//等30个线程累加完毕 } catch (Exception e) { e.printStackTrace(); } } }); t.start(); } barrier.await(); System.out.println("加锁前,a="+a); //加锁后 barrier.reset();//重置CyclicBarrier a=0; for(int i=0;i<30;i++){ new Thread(new Runnable() { @Override public void run() { for(int i=0;i<10000;i++){ increment2();//a++采用Mutex进行同步处理 } try { barrier.await();//等30个线程累加完毕 } catch (Exception e) { e.printStackTrace(); } } }).start(); } barrier.await(); System.out.println("加锁后,a="+a); } /** * 没有同步措施的a++ * @return */ public static void increment1(){ a++; } /** * 使用自定义的Mutex进行同步处理的a++ */ public static void increment2(){ mutex.lock(); a++; mutex.unlock(); } } TestMutex
测试结果:
加锁前,a=279204 加锁后,a=300000
源码分析
我们先来简单描述下AQS的基本实现,前面我们提到过,AQS维护一个共享资源state,通过内置的FIFO来完成获取资源线程的排队工作。(这个内置的同步队列称为"CLH"队列)。该队列由一个一个的Node结点组成,每个Node结点维护一个prev引用和next引用,分别指向自己的前驱和后继结点。AQS维护两个指针,分别指向队列头部head和尾部tail。
其实就是个双端双向链表。
当线程获取资源失败(比如tryAcquire时试图设置state状态失败),会被构造成一个结点加入CLH队列中,同时当前线程会被阻塞在队列中(通过LockSupport.park实现,其实是等待态)。当持有同步状态的线程释放同步状态时,会唤醒后继结点,然后此结点线程继续加入到对同步状态的争夺中。
Node结点是AbstractQueuedSynchronizer中的一个静态内部类,我们捡Node的几个重要属性来说一下
static final class Node { /** waitStatus值,表示线程已被取消(等待超时或者被中断)*/ static final int CANCELLED = 1; /** waitStatus值,表示后继线程需要被唤醒(unpaking)*/ static final int SIGNAL = -1; /**waitStatus值,表示结点线程等待在condition上,当被signal后,会从等待队列转移到同步到队列中 */ /** waitStatus value to indicate thread is waiting on condition */ static final int CONDITION = -2; /** waitStatus值,表示下一次共享式同步状态会被无条件地传播下去 static final int PROPAGATE = -3; /** 等待状态,初始为0 */ volatile int waitStatus; /**当前结点的前驱结点 */ volatile Node prev; /** 当前结点的后继结点 */ volatile Node next; /** 与当前结点关联的排队中的线程 */ volatile Thread thread; /** ...... */ }
独占式
获取同步状态--acquire()
来看看acquire方法,lock方法一般会直接代理到acquire上
1 public final void acquire(int arg) { 2 if (!tryAcquire(arg) && 3 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 4 selfInterrupt(); 5 }
我们来简单理一下代码逻辑:
a.首先,调用使用者重写的tryAcquire方法,若返回true,意味着获取同步状态成功,后面的逻辑不再执行;若返回false,也就是获取同步状态失败,进入b步骤;
b.此时,获取同步状态失败,构造独占式同步结点,通过addWatiter将此结点添加到同步队列的尾部(此时可能会有多个线程结点试图加入同步队列尾部,需要以线程安全的方 式添加);
c.该结点以在队列中尝试获取同步状态,若获取不到,则阻塞结点线程,直到被前驱结点唤醒或者被中断。
addWaiter
为获取同步状态失败的线程,构造成一个Node结点,添加到同步队列尾部
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode);//构造结点 //指向尾结点tail Node pred = tail; //如果尾结点不为空,CAS快速尝试在尾部添加,若CAS设置成功,返回;否则,eng。 if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; }
先cas快速设置,若失败,进入enq方法
将结点添加到同步队列尾部这个操作,同时可能会有多个线程尝试添加到尾部,是非线程安全的操作。
以上代码可以看出,使用了compareAndSetTail这个cas操作保证安全添加尾结点。