zoukankan      html  css  js  c++  java
  • 【PyTorch】训练一个最简单的CNN

    导入相关包
    torch.nn.functional中包含relu()maxpool2d()等 CNN 常用操作。

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    import torchvision
    import torchvision.transforms as transforms
    

    显示 pytorch 环境版本及是否使用 GPU

    print(torch.__version__)
    print(torchvision.__version__)
    print(torch.cuda.is_available())
    

    下载FashionMNIST数据集并转换格式为Tensor(Extract & Transform)

    train_set = torchvision.datasets.FashionMNIST(
        root='./data/FashionMNIST'
        ,train=True
        ,download=True
        ,transform=transforms.Compose([
            transforms.ToTensor()
        ])
    )
    

    继承nn.Moudle建立模型,主要是写forward

    class Network(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
            self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)
            
            self.fc1 = nn.Linear(in_features=12*4*4, out_features=120)
            self.fc2 = nn.Linear(in_features=120, out_features=60)
            self.out = nn.Linear(in_features=60, out_features=10)
            
        def forward(self,t):
            #(1) input layer
            t = t
            
            #(2) hidden conv layer
            t = self.conv1(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=2, stride=2)
            
            #(3) hidden conv layter
            t = self.conv2(t)
            t = F.relu(t)
            t = F.max_pool2d(t, kernel_size=2, stride=2)
            
            #(4) hidden linear layer
            t = t.reshape(-1, 12*4*4)
            t = self.fc1(t)
            t = F.relu(t)
            
            #(5) hidden linear layer
            t = self.fc2(t)
            t = F.relu(t)
            
            #(6) output layer
            t = self.out(t)
            
            return t
    

    写工具函数:获得本次预测结果的正确个数

    def get_num_correct(preds, labels):
        return preds.argmax(dim=1).eq(labels).sum().item()
    

    定义网络,优化器,加载(Load)数据(设定 batch 大小等)

    network = Network()
    optimizer = optim.Adam(network.parameters(), lr=0.01)
    train_loader = torch.utils.data.DataLoader(
        train_set
        ,batch_size=100
        ,shuffle=True
    )
    

    训练

    for epoch in range(10):
    
        total_loss = 0
        total_correct = 0
    
        for batch in train_loader: # Get Batch
            images, labels = batch 
    
            preds = network(images) # Pass Batch
            loss = F.cross_entropy(preds, labels) # Calculate Loss
    
            optimizer.zero_grad()
            loss.backward() # Calculate Gradients
            optimizer.step() # Update Weights
    
            total_loss += loss.item()
            total_correct += get_num_correct(preds, labels)
    
        print(
            "epoch", epoch, 
            "total_correct:", total_correct, 
            "loss:", total_loss
        )
    
  • 相关阅读:
    021 顺时针打印矩阵
    020 二叉树的镜像
    019 树的子结构
    018 机器人的运动范围
    017 矩阵中的路径
    022 Jquery总结
    003 css总结
    002 html总结
    016 合并两个排序的链表
    015 反转链表
  • 原文地址:https://www.cnblogs.com/windsing/p/12368479.html
Copyright © 2011-2022 走看看