题目链接:http://codeforces.com/problemset/problem/275/B
题目内容:给出一个n * m 大小的grid,上面只有 black 和 white 两种颜色填充。问任意两个black cell 的连通是否满足最多转一次弯而达到。当然,如果有好多堆black cell 也是不满足条件的,即只能有一堆!!
这是继color the fence 之后,又一条花了我很长时间才做出来的题目,因为搜索这些技巧学不好,于是只能结合观察能力做出来了。其实最直接的方法应该是bfs,可惜= =,好啦我会加油的!!!
主要分成两个个部分判断:1、black cell 是否有且仅为一堆
2、判断是否存在这两种类型:
‘Z’ 类型比较难判断,借鉴了别人的思路:就是判断红色标识的两处地方是否都为'W'
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <cstring> 5 using namespace std; 6 7 const int maxn = 50 + 5; 8 char grid[maxn][maxn], tmp[maxn][maxn]; 9 int n, m, cnt; 10 11 #define REP(i, n) for(i = 1; i <= (n); i++) 12 13 void dfs(int x, int y) // 判断是否为一堆black cell 14 { 15 if (x >= 1 && x <= n && y >= 1 && y <= m && tmp[x][y] == 'B') 16 { 17 tmp[x][y] = 'W'; 18 dfs(x-1, y); 19 dfs(x+1, y); 20 dfs(x, y-1); 21 dfs(x, y+1); 22 } 23 } 24 25 int main() 26 { 27 int i, j, l, k; 28 while (scanf("%d%d", &n, &m) != EOF) 29 { 30 memset(grid, 0, sizeof(grid)); 31 memset(tmp, 0, sizeof(tmp)); 32 REP(i, n) REP(j, m) 33 { 34 cin >> grid[i][j]; 35 tmp[i][j] = grid[i][j]; 36 } 37 cnt = 0; 38 REP(i, n) REP(j, m) 39 { 40 if (tmp[i][j] == 'B') 41 { 42 dfs(i, j); 43 cnt++; 44 } 45 } 46 if (cnt >= 2) // 多于1堆 47 printf("NO "); 48 else 49 { 50 int flag = 0; 51 // 判断类型1 52 for (i = 1; i <= n && !flag; i++) 53 { 54 for (j = 1; j <= m && !flag; j++) 55 { 56 if (grid[i][j] == 'B' && grid[i][j+1] == 'W') 57 { 58 j++; 59 while (grid[i][j] == 'W' && j <= m) 60 j++; 61 if (grid[i][j] == 'B' && j <= m) 62 flag = 1; 63 } 64 } 65 } 66 if (!flag) 67 { 68 for (j = 1; j <= n && !flag; j++) 69 { 70 for (i = 1; i <= m && !flag; i++) 71 { 72 if (grid[i][j] == 'B' && grid[i+1][j] == 'W') 73 { 74 i++; 75 while (grid[i][j] == 'W' && i <= n) 76 i++; 77 if (grid[i][j] == 'B' && i <= n) 78 flag = 1; 79 } 80 } 81 } 82 } 83 // 判断类型2 84 if (!flag) 85 { 86 REP(i, n) REP(j, m) REP(k, n) REP(l, m) 87 { 88 if (grid[i][j] == 'B' && grid[k][l] == 'B' && grid[k][j] == 'W' && grid[i][l] == 'W') 89 { 90 flag = 1; 91 break; 92 } 93 } 94 } 95 if (!flag) 96 printf("YES "); 97 else 98 printf("NO "); 99 } 100 } 101 return 0; 102 }