zoukankan      html  css  js  c++  java
  • gzhu 2013 Good Sequence 解题报告

    题目链接:(这个是内网的网址)  http://172.22.27.1/problem?pid=1013

     

                    Good Sequence

    Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 128000/64000 KB (Java/Others)

    Problem Description

    A sequence contains n integers.

    A sequence p1, p2, p3...pn is a good sequence if it satisfies pi ≤ pi+1. i∈[1, n)<n)<n)<n)< p="">

    KIDx likes good sequence very much. So he has made a random generator in order to generate lots of good sequences.

    But unfortunately, there is something wrong with his generator so that it always generates bad sequences.

    Now, KIDx has to transform every bad sequence to a good one. He can change any integer  in the sequence.

    Your task is to find out the minimum number of integers KIDx has to change to get a good sequence.

    Input

    Each case contains a positive integer n (n ≤ 5000) in the first line and a sequence which contains n integers pi (0 ≤ p< 108) in the second line.

    Output

    For each test case, output the answer in a single line.

    Sample Input

    3
    60 54 30
    5
    44 55 100 72 89

    Sample Output

    2
    1


    写下这题是为了纪念我蹩脚的DP!!!
    求出最长非递减序列的个数,然后拿n - 个数 就是答案

     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 
     5 const int maxn = 5000 + 10;
     6 int p[maxn], dp[2*maxn];
     7 
     8 int main()
     9 {
    10     int i, j, n;
    11     while (scanf("%d", &n) != EOF)
    12     {
    13         for (i = 1; i <= n; i++)
    14          {
    15             scanf("%d", &p[i]);
    16             dp[i] = 1;
    17          }
    18         int ans = dp[1];
    19         for (i = 2; i <= n; i++)
    20         {
    21             for (j = 1; j <= i-1; j++)
    22             {
    23                 if (p[j] <= p[i] && dp[j] + 1 >= dp[i])
    24                 {
    25                     dp[i] = dp[j] + 1;
    26                     ans = max(ans, dp[i]);
    27                 }
    28             }
    29         }
    30         printf("%d
    ", n-ans);
    31     }
    32     return 0;
    33 }

  • 相关阅读:
    for语句及switch case用法示例
    ●验证控件
    ●LinQ to SQL
    ●操作Word
    141107●VS2012的一些使用技巧
    ●Winform拖动无边框窗口、播放音频、启动外部exe程序
    ●操作文件目录及文件
    ●流
    ●事务及异常处理
    ●Winform对话框
  • 原文地址:https://www.cnblogs.com/windysai/p/3606444.html
Copyright © 2011-2022 走看看