zoukankan      html  css  js  c++  java
  • codeforces 501C. Misha and Forest 解题报告

    题目链接:http://codeforces.com/problemset/problem/501/C

    题目意思:有 n 个点,编号为 0 ~ n-1。给出 n 个点的度数(即有多少个点跟它有边相连)以及跟它相连的点的编号的异或结果。最后需要输出整幅图的所有边的情况。

      这道题确实是一道很好的题目!!!!它说拓扑排序的变形,需要队列的运用,还有就是异或计算的性质!!!(非一般厉害)

      由于是无向无环的简单图,换言之就是一棵树啦^_^。那么它就肯定有叶子结点,叶子节点的度数为1,此时它相邻点的异或结果实际上就是所求点的编号了。然后把跟叶子节点相邻的点的度数-1,代表把叶子节点去除,此时异或结果是有变的。需要用本来的异或结果跟该叶子节点再异或一次,就得出除了这个叶子节点外其他点的异或值了。举个例子吧,假如有一幅图是这样的。

                

           0 的相邻点有1、 2、 3,异或出来的结果是0,它的度数是3.那么当处理0-1这条边时,容易知道去除1这个点后,只有2和3异或了:10 ^ 11 = 1,刚好等于 1 ^ 2 ^ 3 ^ 1 (01 ^ 10 ^ 11 ^ 01)。异或的一个性质就是a^b^c^a = b ^ c。是不是很神奇呢~~~~当然我们总是处理那些度数为1的点,把这些点放入队列里面,依次处理。

      

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstdlib>
     4 #include <queue>
     5 using namespace std;
     6 
     7 #define f first
     8 #define s second
     9 
    10 const int maxn = (1<<16) + 5;
    11 int degree[maxn], XOR_sum[maxn];
    12 
    13 int main()
    14 {
    15     #ifndef ONLINE_JUDGE
    16         freopen("in.txt", "r", stdin);
    17     #endif // ONLINE_JUDGE
    18 
    19     int n;
    20     while (scanf("%d", &n) != EOF) {
    21         queue<int> q;
    22         pair<int, int> ans[maxn];
    23         for (int i = 0; i < n; i++) {
    24             scanf("%d%d", &degree[i], &XOR_sum[i]);
    25             if (degree[i] == 1)
    26                 q.push(i);
    27         }
    28         int cnt = 0;
    29         while (!q.empty()) {
    30             int from = q.front();
    31             q.pop();
    32             if (degree[from] == 1) {   // 这句判断很重要,因为有可能degree[]--过程中使得变为0
    33                 int to = XOR_sum[from];
    34                 ans[cnt].f = from;
    35                 ans[cnt++].s = to;
    36                 degree[to]--;
    37                 XOR_sum[to] ^= from;   // 异或性质
    38                 if (degree[to] == 1)
    39                     q.push(to);
    40             }
    41         }
    42         printf("%d
    ", cnt);
    43         for (int i = 0; i < cnt; i++)
    44             printf("%d %d
    ", ans[i].f, ans[i].s);
    45     }
    46     return 0;
    47 }
  • 相关阅读:
    hdu 3440 House Man
    hdu 2018 母牛的故事
    poj 1639 Picnic Planning 度限制mst
    uva 10870
    矩阵快速幂 模板与简单讲解
    1118sync_binlog innodb_flush_log_at_trx_commit 浅析
    1117Mysql prepare预处理语句
    1116Xlinux初学习之正则表达式和通配符
    1111分析存储引擎
    1111MySQL配置参数详解
  • 原文地址:https://www.cnblogs.com/windysai/p/4303429.html
Copyright © 2011-2022 走看看