zoukankan      html  css  js  c++  java
  • 设计模式之单例设计模式

    1.模式动机:

      对于系统中的某些类来说,只有一个实例很重要,例如,一个系统中可以存在多个打印任务,但是只能有一个正在工作的任务;一个系统只能有一个窗口管理器或文件系统;一个系统只能有一个计时工具或ID(序号)生成器。

      如何保证一个类只有一个实例并且这个实例易于被访问呢?定义一个全局变量可以确保对象随时都可以被访问,但不能防止我们实例化多个对象。

      一个更好的解决办法是让类自身负责保存它的唯一实例。这个类可以保证没有其他实例被创建,并且它可以提供一个访问该实例的方法。这就是单例模式的模式动机。

    2.模式定义:

      单例模式(Singleton Pattern):保证(为某一个类)(只生成唯一的实例对象)。同时提供(能对该实例加以访问的)(全局访问方法)。

      单例模式的要点有三个:

      一是某个类只能有一个实例;

      二是它必须自行创建这个实例;

      三是它必须自行向整个系统提供这个实例。

      单例模式是一种对象创建型模式。

    3.模式代码实现

    饿汉式单例类

    /**
     * 线程安全但效率比较低
     * 一开始就要加载类,new一个对象这是饿汉方式的单例模式
     */
    public class Singleton {
        
        //单例模式最主要的特点,就是构造函数私有化!
        private Singleton() {
        }
    
        //饿了嘛,上来就创建,也不管用不用!
        private static Singleton instance = new Singleton();
    
        //全局访问方法!
        public static Singleton getInstance() {
            return instance;
        }
    }

    上面的例子中,在这个类被加载时,静态变量instance会被初始化,此时类的私有构造子会被调用。这时候,单例类的唯一实例就被创建出来了。
    饿汉式其实是一种比较形象的称谓。既然饿,那么在创建对象实例的时候就比较着急,饿了嘛,于是在装载类的时候就创建对象实例。

    饿汉式是典型的空间换时间,当类装载的时候就会创建类的实例,不管你用不用,先创建出来,然后每次调用的时候,就不需要再判断,节省了运行时间。

    懒汉式单例类

    /**
     * 虽然是安全的,但是效率非常低,在一个时候只有一个线程能访问,同时返回一个对象
     */
    public class Singleton {
    
        private Singleton(){}
        private static Singleton instance = null;
        public static synchronized Singleton getInstance() {
            if (null == instance)
                instance = new Singleton();
            return instance;
        }
    }

    上面的懒汉式单例类实现里对静态工厂方法使用了同步化,以处理多线程环境。
    懒汉式其实是一种比较形象的称谓。既然懒,那么在创建对象实例的时候就不着急。会一直等到马上要使用对象实例的时候才会创建,懒人嘛,总是推脱不开的时候才会真正去执行工作,因此在装载对象的时候不创建对象实例。
    懒汉式是典型的时间换空间,就是每次获取实例都会进行判断,看是否需要创建实例,浪费判断的时间。当然,如果一直没有人使用的话,那就不会创建实例,则节约内存空间
    由于懒汉式的实现是线程安全的,这样会降低整个访问的速度,而且每次都要判断。那么有没有更好的方式实现呢?

    双重检查加锁

    可以使用"双重检查加锁"的方式来实现,就可以既实现线程安全,又能够使性能不受很大的影响。那么什么是"双重检查加锁"机制呢?
    所谓"双重检查加锁"机制,指的是:并不是每次进入getInstance方法都需要同步,而是先不同步,进入方法后,先检查实例是否存在,如果不存在才进行下面的同步块,这是第一重检查,进入同步块过后,再次检查实例是否存在,如果不存在,就在同步的情况下创建一个实例,这是第二重检查。这样一来,就只需要同步一次了,从而减少了多次在同步情况下进行判断所浪费的时间。
    "双重检查加锁"机制的实现会使用关键字volatile,它的意思是:被volatile修饰的变量的值,将不会被本地线程缓存,所有对该变量的读写都是直接操作共享内存,从而确保多个线程能正确的处理该变量。
    注意:在java1.4及以前版本中,很多JVM对于volatile关键字的实现的问题,会导致"双重检查加锁"的失败,因此"双重检查加锁"机制只只能用在java5及以上的版本。

    /**
     * 线程安全,并且效率高,能有多个线程访问
     */
    public class Singleton {
        
        private volatile static Singleton instance = null;
    
        private Singleton() {
        }
    
        public static Singleton getInstance() {
            //先检查实例是否存在,如果不存在才进入下面的同步块
            if (instance == null) {
                //同步块,线程安全的创建实例
                synchronized (Singleton.class) {
                    //再次检查实例是否存在,如果不存在才真正的创建实例
                    if (instance == null) {
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }

    这种实现方式既可以实现线程安全地创建实例,而又不会对性能造成太大的影响。它只是第一次创建实例的时候同步,以后就不需要同步了,从而加快了运行速度。
    提示:由于volatile关键字可能会屏蔽掉虚拟机中一些必要的代码优化,所以运行效率并不是很高。因此一般建议,没有特别的需要,不要使用。也就是说,虽然可以使用“双重检查加锁”机制来实现线程安全的单例,但并不建议大量采用,可以根据情况来选用。
    根据上面的分析,常见的两种单例实现方式都存在小小的缺陷,那么有没有一种方案,既能实现延迟加载,又能实现线程安全呢?

    Lazy initialization holder class模式

    这个模式综合使用了Java的类级内部类和多线程缺省同步锁的知识,很巧妙地同时实现了延迟加载和线程安全。

      1.相应的基础知识

    •  什么是类级内部类?

      简单点说,类级内部类指的是,有static修饰的成员式内部类。如果没有static修饰的成员式内部类被称为对象级内部类。

      类级内部类相当于其外部类的static成分,它的对象与外部类对象间不存在依赖关系,因此可直接创建。而对象级内部类的实例,是绑定在外部对象实例中的。

      类级内部类中,可以定义静态的方法。在静态方法中只能够引用外部类中的静态成员方法或者成员变量。

      类级内部类相当于其外部类的成员,只有在第一次被使用的时候才被会装载。

    •  多线程缺省同步锁的知识

      大家都知道,在多线程开发中,为了解决并发问题,主要是通过使用synchronized来加互斥锁进行同步控制。但是在某些情况中,JVM已经隐含地为您执行了同步,这些情况下就不用自己再来进行同步控制了。这些情况包括:

      1.由静态初始化器(在静态字段上或static{}块中的初始化器)初始化数据时

      2.访问final字段时

      3.在创建线程之前创建对象时

      4.线程可以看见它将要处理的对象时

      2.解决方案的思路

      要想很简单地实现线程安全,可以采用静态初始化器的方式,它可以由JVM来保证线程的安全性。比如前面的饿汉式实现方式。但是这样一来,不是会浪费一定的空间吗?因为这种实现方式,会在类装载的时候就初始化对象,不管你需不需要。

      如果现在有一种方法能够让类装载的时候不去初始化对象,那不就解决问题了?一种可行的方式就是采用类级内部类,在这个类级内部类里面去创建对象实例。这样一来,只要不使用到这个类级内部类,那就不会创建对象实例,从而同时实现延迟加载和线程安全。

      示例代码如下:

    public class Singleton {
    
        private Singleton() {
        }
    
        /**
         * 类级的内部类,也就是静态的成员式内部类,该内部类的实例与外部类的实例
         * 没有绑定关系,而且只有被调用到时才会装载,从而实现了延迟加载。
         */
        private static class SingletonHolder {
            /**
             * 静态初始化器,由JVM来保证线程安全
             */
            private static final Singleton instance = new Singleton();
        }
    
        public static Singleton getInstance() {
            return SingletonHolder.instance;
        }
    }

    当getInstance方法第一次被调用的时候,它第一次读取SingletonHolder.instance,导致SingletonHolder类得到初始化;而这个类在装载并被初始化的时候,会初始化它的静态域,从而创建Singleton的实例,由于是静态的域,因此只会在虚拟机装载类的时候初始化一次,并由虚拟机来保证它的线程安全性。

      这个模式的优势在于,getInstance方法并没有被同步,并且只是执行一个域的访问,因此延迟初始化并没有增加任何访问成本。

    单例和枚举

    按照《高效Java 第二版》中的说法:单元素的枚举类型已经成为实现Singleton的最佳方法。用枚举来实现单例非常简单,只需要编写一个包含单个元素的枚举类型即可。

    public enum Singleton {
        /**
         * 定义一个枚举的元素,它就代表了Singleton的一个实例。
         */
        
        uniqueInstance;
        
        /**
         * 单例可以有自己的操作
         */
        public void singletonOperation(){
            //功能处理
        }
    }

    使用枚举来实现单实例控制会更加简洁,而且无偿地提供了序列化机制,并由JVM从根本上提供保障,绝对防止多次实例化,是更简洁、高效、安全的实现单例的方式。

    Jdk中的单例模式: 
    Java.lang.Runtime#getRuntime()

    参考资料 
    1. 《singleton模式四种线程安全的实现》 
    2. 《如何防止单例模式被JAVA反射攻击》 
    3. 《JAVA序列化 》 
    4. 《Java枚举类型enum》 
    5. 《Effective Java(Second Edition)》Joshua Bloch. 
    6. 《细数JDK里的设计模式

    7. 《JAVA与模式》之单例模式

  • 相关阅读:
    Django基础二之URL路由系统
    Django基础一之web框架的本质
    HTTP协议超级详解
    动态规划-背包问题
    java 中对象比较大小
    排序算法
    泛型
    打jar包和使用jar包
    Mongodb中Sharding集群
    linux时间同步,ntpd、ntpdate
  • 原文地址:https://www.cnblogs.com/winner-0715/p/4891457.html
Copyright © 2011-2022 走看看