zoukankan      html  css  js  c++  java
  • [C++] 习题 2.18 倒序查找字串

    倒序查找字串:

    设计一个算法,在串 str 中查找字串 substr 最后一次出现的位置(不能使用 STL)

    为了完成那个不能使用STL,我实现了 string 类及 KMP 算法……但是现在回想一下当时难道是傻了?完全没有必要啊 orz (所以说这一整篇要讲的其实是 string 类的实现和 KMP 算法)。

    前置技能

    字符串

    本质上是字符数组,以'\0'标记结束,所以它每一位的单个元素都是可以提取的,如s = “ abcdefghij ”,则s[0] as[9]j
    通常以串的整体作为操作对象,如:在串中查找某个子串、求取一个子串、在串的某个位置上插入一个子串以及删除一个子串等。
    两个字符串相等的充要条件是:长度相等,并且各个对应位置上的字符都相等。
    设T、P是两个串,求P在T中首次出现的位置的运算叫做模式匹配,其中,T为目标串(target),P为模式串(pattern)。

    KMP 算法

    朴素模式匹配算法是一位一位地进行比较,使用循环嵌套,最坏情况需要进行目标串长度×模式串长度次比较,所以效率较慢。此时,Knuth、Morris、Pratt三人不满足于目前的匹配效率,对模式匹配进行深入研究,发现了在进行模式匹配的时候可以有更快速的方法,即基于模式串本身算出特征向量,增加每次不匹配时右移模式串位数,于是他们对朴素模式匹配算法进行了改进,改进后的算法叫做 KMP 算法。
    首先,我们书上有关 KMP 算法的那部分可读性不高。那么在网上搜索之后发现,网上有关 KMP 算法的文章很多,但详细讲述过程及原理的不多,真正讲得好的文章在定义方面又有细微的不同,比如说有些从1开始标号,有些next表示的是前一个而有些是当前的,通读下来,难免会混乱。
    所以我推荐一篇包含以上为读者着想的内容,有约法两条;包含以下图片,可读性很强的一篇博文:https://www.cnblogs.com/SYCstudio/p/7194315.html
    SYCstudio - KMP
    上机助教:你们这个怎么讲的?我们当时讲了两节课。
    答:大概就是……讲了半节课,老师最后说这个很重要,我们就自己回去看咯。
    上机助教:……这个是很重要,你们好好学啊。:)

    需求描述

    原则上的需求:

    1. 循环读入字符
    2. 查找最后一次出现的位置:每查找到一次记录,输出最后一个查找到的位置
      我一拍脑瓜实现的需求:
    3. string 类及基本操作
    4. 朴素匹配算法及 KMP 算法
      果然当时是傻了

    概要设计

    头文件基本引用书上的内容(并不,发现书上的函数有些是多余的,另外缺少对某些运算符的重载),实现过程中发现 string 与命名空间 std 中已有关键字重复,所以使用了 String 作为类名。(在参考了书上和网上的代码之后,我总结出)基本思想是实现好对字符数组的操作,剩下对字符串的操作就各种调用 strcpy 和 strcat,真省事……啊?(感觉很奇怪23333)

    #include<iostream>
    
    class String
    {
    private:
    	char * str;
    	int size;
    	char * strcpy(char * s1,const char * s2);    //将s2复制到s1,并返回s1
    	char * strcat(char * s1,const char * s2);    //将s2拼接到s1尾部
    public:
    	String();
    	String(char * s);              //构造函数
    	String(const String & s);      //拷贝构造函数
    	~String();                     //析构函数
    	int strsize();                 //返回字符串长度 
    	int strlen(char * s);          //计算长度,不计结束符,空串长度为0
    	int strcmp(const char * s1,const char *s2); //比较s1和s2
    	String subString(int index, int count);     //提取字串,当长度非法时返回自身
    // 	char * strchr(char * s,char c);             //查找s中c出现位置,s不含c则返回空指针
    // 	char * strrchr(char * s,char c);            //从s尾部查找c的位置,不含则返回空指针
    	bool operator == (const String &s);
    	String & operator = (const String & s);
    	String & operator += (String & s);
    	String operator + (String & s);
    	char operator [](int index);
    	friend std::ostream & operator << (std::ostream & o,String & a);
    	friend std::istream & operator >> (std::istream & is,String & a);
    };
    
    1. 比较函数是比较 s1 和 s2,相同返回 0,s1 > s2 返回 1,s1 < s2 返回 -1
    2. 赋值= 、下标[ ]、调用( )、和成员访问箭头->、取地址&、引用*,这些运算符因为必须跟在给定类型之后,所以必须是成员函数
    3. 输入>>输出<<运算符跟在 istream 和 ostream 后,所以必须是友元函数
    4. 复合赋值运算符应该是成员(如+=),但是并非必须
    5. 其它运算符如果是对称性的运算符(可能转换任一端的运算对象,例如算数、相等性、关系和位运算符等)通常定义为友元函数。如果把 + 运算符定义成一个成员函数,则它左侧和右侧的运算对象的类必须和运算符同类。(即我定义的 + 运算符无法计算 char* 类型在左,和 string 类型的相加)
      看到没这个类里明明有前后查找,为什么我不但不实现还要再定义一个头文件实现三种查找?典型的反面教材啊/捂脸
    #include"string.h"
    
    int NaiveStrMatching(String & T,String & P);     //朴素字符串模式匹配算法
    int * Next(String & s);                          //计算特征向量
    int KMPStrMatching(String & T,String & P);       //KMP匹配算法
    int tKMPStrMatching(String & T,String & P);      //调用KMP进行反向查找
    

    T为目标串 ( target ) P为模式串 ( pattern )

    具体实现

    string.cpp

    抄好书上的代码之后疯狂 debug,感受就是delete[] 是个学问

    #include "string.h"
    #include<iostream>
    
    String::String(){
    	size = 0;
    	str = nullptr;
    }
    String::String(char * s){
    	size = strlen(s);
    	str = new char[size + 1];
    	strcpy(str,s);
    }
    String::String(const String &s){
    	size = s.size;
    	strcpy(str,s.str);
    }
    String::~String(){
    	size = 0;
    	delete [] str;
    }
    int String::strsize(){
    	return size;
    }
    int String::strlen(char * s){
    	int count = 0;
    	while(s[count] != '\0') count++;
    	return count;
    }
    
    int Sring::strcmp(const char * s1,const char *s2){
    	int count = 0;
    	while(s1[count] != '\0' && s2[count] != '\0'){
    		if(s1[count] > s2[count])		return 1;
    		else if(s1[count] < s2[count])	return -1;
    		count++;
    	}
    	if(s1[count] == '\0' && s2[count] != '\0')			return -1;
    	else if(s1[count] != '\0' && s2[count] == '\0')		return 1;
    	else 												return 0;
    }
    char * String::strcpy(char * s1,const char * s2){
    	int i = 0;
    	while(s2[i] != '\0'){
    		s1[i] = s2[i];
    		i++;
    	}
    	s1[i]='\0';
    	return s1;
    }
    char * String::strcat(char* s1, const char* s2){
    	int i = 0,j;
    	j=strlen(s1);
    	do{
    		s1[j] = s2[i];
    		i++;
    		j++;
    	}while(s2[i] != '\0');
    	return s1;
    }
    String String::subString(int index, int count){
    	String temp;
    	if(index >= size || count == 0){
    		temp.size = size;
    		temp.str = str;
    		return temp;
    	}
    	int i;
    	if(count > size - index)
    		count = size - index;
    	char *q;
    	temp.str = new char[count + 1];
    	q = &str[index];
    	for(i = 0; i < count; i++)
    		temp.str[i] = * q++;
    	temp.str[i] = '\0';
    	temp.size = count;
    	return temp;
    }
    bool String::operator == (const String &s)
    {
    	return strcmp(str,s.str) ? false : true;
    }
    String & String::operator = (const String & s){
    	if(size != s.size){
    		if (size != 0) delete [] str;
    		str = new char[s.size+1];
    		size = s.size;
    	}
    	strcpy(str,s.str);
    	return * this;
    }
    String String::operator + (String & s){
    	String tmp(str);
    	delete [] tmp.str;
    	tmp.str = new char[size + s.size + 1];
    	tmp.size = size + s.size;
    	strcpy(tmp.str,str);
    	strcat(tmp.str,s.str);
    	return tmp;
    }
    String & String::operator += (String & s){
    	size = size + s.size;
    	char *tmp = new char[size + 1];
    	strcpy(tmp,str);
    	strcat(tmp,s.str);
    	delete [] str;
    	str = tmp;
    	return * this;
    }
    char String::operator[](int index){
    	return str[index];
    }
    
    std::ostream & operator << (std::ostream &out,String &a) {
    	if(a.size == 0)
    		out<<"nullptr";
    	else
    		out<<a.str;
    	return out;
    }
    std::istream & operator >> (std::istream &in,String &a){
    	char tmp[1024]={0};
    	in >> tmp;
    	if(a.str != NULL){
    		delete a.str;
    	}
    	a.size = a.strlen(tmp);
    	a.str = new char[a.size+1];
    	a.strcpy(a.str,tmp);
    	return in;
    }
    

    strmatching.cpp

    书上的 KMP 算法代码好像没什么问题,但实在是不知道他的下标怎么算得

    #include"strmatching.h"
    #include"string.h"
    
    int NaiveStrMatching(String & T,String & P){
    	int p = 0,t = 0;
    	int plen = P.strsize();
    	int tlen = T.strsize();
    	if(tlen < plen)		return -1;
    	while(p < plen && t < tlen){
    		if(T[t] == P[p]){
    			p++;
    			t++;
    		}
    		else{
    			t = t - p + 1;
    			p = 0;
    		}
    	}
    	if(p == plen) return (t - plen + 1);
    	else return -1;
    }
    //此处计算特征向量的方法显然是我自己闭门造车的产物
    //更好的算法详见上文中提到的博文
    int * Next(String & s){
    	int i, j;
    	static int *F = new int[s.strsize()];
    	F[0] = 0;
    	for (i = 1;i < s.strsize();i++) {
    		F[i] = 0;
    		for (j = i;j > 0;j--){
    			for(int k = 0;k <j;k++){
    				if(s[k] != s[k + i - j + 1])
    					break;
    				if(k + i - j + 1== i){
    					F[i]=j;
    					j=0;
    				}
    			}
    		}
    	}
    	return F;
    }
    int KMPStrMatching(String & T,String & P){
    	int p = 0,t = 0;
    	int plen = P.strsize();
    	int tlen = T.strsize();
    	if(tlen < plen)		return -1;
    	int *F = Next(P);
    	while(p < plen && t < tlen){
    		if(T[t] == P[p]){
    			if (p == (plen -1))		return t-plen+2;
    			p++;
    			t++;
    		}
    		else{
    			p = F[p-1];
    			if(p == 0 && T[t] != P[p])	t++;
    		}
    	}
    	return -1;
    }
    int tKMPStrMatching(String & T,String & P){
    	int find,f;
    	String F;
    	find = KMPStrMatching(T,P);
    	f = find;
    	if (find == -1)
    		return -1;
    	F = T.subString(find + P.strsize() -1,1024);
    	while(find != -1){
    		find = KMPStrMatching(F,P);
    		if(find != -1 && find + P.strsize() <= F.strsize()){
    			f += find;
    			f += P.strsize() - 1;
    			F = F.subString(find + P.strsize() -1,1024);
    		}
    		else if(find != -1){
    			f += find;
    			f += P.strsize() - 1;
    			return f;
    		}
    		else
    			return f;
    	}
    	return -1;
    }
    

    main.cpp

    封装好的类调用果然很方便……能实现的也远远不止这道题

    #include"string.h"
    #include"strmatching.h"
    #include<iostream>
    
    using namespace std;
    
    int main(){
    	String a,b;
    	cout<<"please input a:"<<endl;
    	cin>>a;
    	cout<<"please input b:"<<endl;
    	cin>>b;
    	cout<<"a in b : "<<NaiveStrMatching(b,a)<<endl;
    	cout<<"a in b : "<<KMPStrMatching(c,a)<<endl;
    	cout<<"a in b : "<<tKMPStrMatching(c,a)<<endl;
    }
    

    用户的需求是3,如果在同样的时间内作出了5,大概是好事;如果用成倍的时间作出了10,大概就是傻子了吧。

    唉。

    就当复习 KMP 算法了

  • 相关阅读:
    借阅的列表
    列表中的方法
    对编程本质的认识
    列表技能
    链表策略
    在pycharm里添加解释器路径
    数据类型转化
    罗列内存中的数字
    【python3的学习之路十】模块
    【python3的学习之路九】函数式编程
  • 原文地址:https://www.cnblogs.com/winng/p/algorithm_substr.html
Copyright © 2011-2022 走看看