zoukankan      html  css  js  c++  java
  • Libtorch 与 Pytorch常用写法对比

     1 #include<iostream>
     2 #include<torch/torch.h>
     3 #include<torch/script.h>
     4 
     5 int main()
     6 {
     7     torch::Tensor t1 = torch::rand({4, 5});
     8 
     9     // print shape
    10     t1.print();
    11     std::cout << "t1.sizes = " << t1.sizes() << std::endl;
    12     // print the tensor
    13     std::cout << "t1 = " << t1 << std::endl;             std::cout << std::endl;
    14     float a1 = t1[1][2].item().toFloat();
    15     std::cout << "t1[1][2] = " << a1 << std::endl; std::cout << std::endl;
    16 
    17     // 访问某一列
    18     torch::Tensor t2 = t1.select(0, 3); // 0 = dimY, 1 = dimX
    19     // print the tensor
    20     std::cout << "t2 = " << t2 << std::endl; std::cout << std::endl;
    21 
    22     // 批量处理
    23     torch::Tensor t3 = torch::rand({ 3, 5 });
    24     std::cout << "t3 = " << t3 << std::endl;             std::cout << std::endl;
    25     torch::Tensor t4 = t3.ge(0.5);
    26     std::cout << "t4 = " << t4 << std::endl;             std::cout << std::endl;
    27     torch::Tensor t5 = (t3 > 0.5); // 0 or 1, as bool vec
    28     std::cout << "t5 = " << t5 << std::endl;             std::cout << std::endl;
    29     
    30     torch::Tensor t6 = torch::masked_select(t3, t5);
    31     std::cout << "t6 = " << t6 << std::endl;             std::cout << std::endl;
    32 
    33     torch::Tensor t7 = t3.masked_select(t5);
    34     std::cout << "t7 = " << t7 << std::endl;             std::cout << std::endl;
    35 
    36     // 创建一个mask,筛选行
    37     // torch::from_blob 针对torch::kBool居然有bug
    38     /*std::vector<int> v4{1, 0, 1};
    39     torch::Tensor mask4 = torch::from_blob(v4.data(), { 3, 1 }, torch::kBool);
    40     std::cout << "mask4 = " << mask4 << std::endl;*/
    41     torch::Tensor mask5 = torch::tensor({ {1}, {0}, {1} }, torch::kBool);
    42     std::cout << "mask5 = " << mask5 << std::endl;             std::cout << std::endl;
    43     std::cout << "mask5.size() = " << mask5.sizes() << std::endl;             std::cout << std::endl;
    44 
    45     torch::Tensor t5_ = torch::rand({3, 6});
    46     std::cout << "t5_ = " << t5_ << std::endl;             std::cout << std::endl;
    47     auto t6_ = torch::masked_select(t5_, mask5).view({-1, 6}); // view展平是必须的
    48     std::cout << "t6_ = " << t6_ << std::endl;             std::cout << std::endl;
    49 
    50     // 构建一个张量
    51     torch::Tensor t8 = torch::rand({6, 6});
    52     std::cout << "t8 = " << t8 << std::endl;             std::cout << std::endl;
    53     std::cout << "t8.slice(0, 2, 4) = " << t8.slice(0, 2, 4) << std::endl;             std::cout << std::endl;
    54     
    55     // 行/列最大值
    56     torch::Tensor t9 = torch::rand({ 3, 4 });
    57     std::cout << "t9 = " << t9 << std::endl;             std::cout << std::endl;
    58     std::tuple<torch::Tensor, torch::Tensor> max_info = torch::max(t9, 0); // 0:代表列, slice那里0代表行
    59     // 访问元组
    60     torch::Tensor max_vals = std::get<0>(max_info);
    61     torch::Tensor idxs = std::get<1>(max_info);
    62     std::cout << "max_vals = " << max_vals << std::endl;             std::cout << std::endl;
    63     std::cout << "idxs = " << idxs << std::endl;             std::cout << std::endl;
    64 
    65     // 拼接
    66     torch::Tensor t10 = torch::cat({ t3, t9 }, 1);
    67     std::cout << "t10 = " << t10 << std::endl;             std::cout << std::endl;
    68     system("pause");
    69     return 1;
    70 }
    LearningPytorch.py
     1 import numpy as np
     2 import torch
     3 
     4 if __name__ == "__main__":
     5     ## e.g. 2.4
     6     # 声明tensor
     7     t1 = torch.tensor([[1, 2, 3], [2, 3, 4]])
     8     print('t1.dtype = ', t1.dtype)
     9     print('t1.shape = ', t1.shape)
    10     t1 = torch.tensor(range(10))  # 转换迭代器为张量
    11     # numpy -> tensor
    12     t1 = torch.tensor(np.array([1, 2, 3]))
    13     t2 = torch.from_numpy(np.array([1, 2, 3]))
    14     # tensor -> numpy
    15     t3 = t2.numpy()
    16 
    17     # 随机tensor
    18     t1 = torch.randn(3, 3) * 10  # randn:正态分布, rand:均匀分布
    19     t2 = t1.to(torch.int8)
    20 
    21     ## e.g. 2.5 随机数
    22     t1 = torch.rand(3, 3)  # 3*3矩阵,元素服从[0, 1)均值分布
    23     t1 = torch.randn(2, 3, 4)  # 2*3*4, 高斯分布
    24     t1 = torch.zeros(2, 2, 2)
    25     t1 = torch.ones(3, 4, 5) * 4
    26     t1 = torch.eye(4)
    27     t1 = torch.randint(1, 5, (3, 3))  # # 生成[0, 10)之间均匀分布整数的3×3矩阵
    28 
    29     ## e.g. 2.6 随机数
    30     t1 = torch.randn(3, 3)
    31 
    32     # 复制t1的shape
    33     t2 = torch.zeros_like(t1)  # 生成一个元素全为0的张量,形状和给定张量t1相同
    34     t2 = torch.ones_like(t1)
    35     t2 = torch.randn_like(t1)  # 正太分布
    36 
    37     # 复制t1的类型
    38     t3 = t1.new_tensor([1, 2, 3])  # 根据Python列表生成张量,注意这里输出的是单精度浮点数
    39     t3 = t1.new_zeros(3, 3)  # 生成相同类型且元素全为0的张量
    40     t3 = t1.new_ones(3, 3)  # 生成相同类型且元素全为1的张量
    41 
    42     # e.g. 2.8 设备
    43     t1 = torch.randn(3, 3, device="cpu")  # 获取存储在CPU上的一个张量
    44     t1 = torch.randn(3, 3, device="cuda:0")  # 获取存储在0号GPU上的一个张量
    45     t1 = torch.randn(3, 3, device="cuda:0").device  # 获取当前张量的设备
    46     t1 = torch.randn(3, 3, device="cuda:0").cpu().device  # 张量从1号GPU转移到CPU
    47     t1 = torch.randn(3, 3, device="cuda:0").cuda(0).device  # 张量保持设备不变
    48 
    49     # e.g. 2.9 指针、维度
    50     t1 = torch.randn(3, 4, 5)
    51     nd = t1.ndimension()  # channels = 3;获取维度的数目
    52     ne = t1.nelement()  # c*w*h = 60;获取该张量的总元素数目
    53     sz = t1.size()  # torch.Size([3, 4, 5])
    54     c = t1.size(0)  # 获取该张量维度0的大小,调用方法
    55     t = torch.randn(12)  # 产生大小为12的向量
    56     t1 = t.view(3, 4)  # 向量改变形状为3×4的矩阵
    57     t1 = t1.view(-1, 4)  # 第一个维度为-1,PyTorch会自动计算该维度的具体值
    58     t1.view(4, 3)[0, 0] = 99.0  # 访问一个元素、遍历
    59     ptr = t1.data_ptr()  # 获取tensor数据指针
    60     t1.view(3, 4).data_ptr()  # 获取张量的数据指针
    61     t1.view(4, 3).contiguous().data_ptr()  # 同上,不改变
    62     t1.view(3, 4).transpose(0, 1).data_ptr()  # transpose方法交换两个维度
    63     t1.view(3, 4).transpose(0, 1).contiguous().data_ptr()  # 步长和维度不兼容,重新生成张量(即:会重新分配内存)
    64 
    65     # e.g. 2.10 mask
    66     t1 = torch.randn(2, 3, 4)
    67     t2 = t1[1, 2, 3]
    68     t2 = t1[:, 1:, 1:3]
    69     mask = t1 > 0  # t1中元素大于0 的mask,mask.shape 等于 t1.shape
    70     t2 = t1[mask]  # torch.Size([15]), t2是一个n*1的行向量
    71 
    72     # e.g. 2.11 sqrt && sum
    73     t1 = torch.randint(1, 9, (3, 3))
    74     t1 = t1.to(torch.float)
    75     t2 = t1.sqrt()  # 操作不改变t1的值
    76     t3 = torch.sqrt(t1)  # 操作不改变t1的值
    77     t1.sqrt_()  # 平方根原地操作,修改自己的值
    78     sum1 = torch.sum(t1)  # 默认对所有的元素求和
    79     sum2 = torch.sum(t1, 0)  # 对第0维的元素求和
    80     sum3 = torch.sum(t1, [0, 1])  # 对第0、1维的元素求和
    81 
    82     mean1 = t1.mean()  # 对所有元素求平均,也可以用torch.mean函数
    83     mean2 = t1.mean(0)  # 对第0维的元素求平均
    84     mean3 = torch.mean(t1, [0, 1])  # 对第0、1维元素求平均, mean.shape = 1*1
    85 
    86     # e.g. 2.12 加减乘除(其实都重载了运算符,自己取试一试)
    87     t1 = torch.rand(2, 3)
    88     t2 = torch.rand(2, 3)
    89     t3 = t1.add(t2)
    90     t4 = t1.sub(t2)
    91     t5 = t1.mul(t2) # 对应元素相乘,非矩阵乘法
    92     t6 = t1 * t2
    93     t1.add_(t2)  # 四则运算,改变参与运算张量(t2)的值
    94 
    95 
    96     var = torch.__version__
    View Code
    LearningPytorch.cpp
      1 #include<torch/torch.h>
      2 #include<torch/script.h>
      3 #include<iostream>
      4 using namespace std; // 项目中建议不要使用
      5 
      6 void printTitle(const string& title)
      7 {
      8     cout << endl;
      9     cout << "******【" << title << "】******" << endl;
     10 }
     11 
     12 int main()
     13 {
     14     // e.g. 2.4
     15     {
     16         printTitle("e.g. 2.4");
     17         // 声明tensor
     18         torch::Tensor t1 = torch::tensor({ { 1, 2, 3 }, { 2, 3, 4 } }, torch::kByte);
     19         cout << "t1.dtype() = " << t1.dtype() << endl; // __int64
     20         t1.print();
     21         cout << "t1 = " << t1 << endl;
     22         t1 = torch::range(1, 10, torch::kByte);
     23 
     24         // 随机tensor
     25         t1 = torch::randn({ 3, 3 }, torch::kFloat) * 10;
     26         cout << "t1 = " << t1 << endl;
     27         torch::Tensor t2 = t1.to(torch::kInt8);
     28         cout << "t2 = " << t2 << endl;
     29     }
     30     // e.g. 2.5 随机
     31     {
     32         printTitle("e.g. 2.5 随机");
     33         torch::Tensor t1 = torch::rand({ 3, 3 }, torch::kFloat32);
     34         t1 = torch::randn({ 2, 3, 4 });
     35         t1 = torch::zeros({ 2, 2, 2 }, torch::kUInt8);
     36         t1 = torch::ones({ 3, 4 }) * 9;
     37         t1 = torch::eye(3, torch::kFloat);
     38         t1 = torch::randint(0, 4, { 3, 3 });
     39         cout << "t1 = " << t1 << endl;
     40 
     41     }
     42     // e.g. 2.6 随机
     43     {
     44         printTitle("e.g. 2.6 随机");
     45         torch::Tensor t1 = torch::rand({ 3, 3 }, torch::kFloat32);
     46         // copy the shape of t1
     47         torch::Tensor t2 = torch::zeros_like(t1);
     48         t2 = torch::ones_like(t1);
     49         t2 = torch::randn_like(t1);
     50 
     51         // copy the dtype of t1
     52         torch::Tensor t3 = t1.new_zeros({ 3, 3 }); // 生成相同类型且元素全为0的张量
     53         t3 = torch::ones(t1.sizes(), t1.dtype()); // 和opencv一样
     54         t3 = torch::zeros(t1.sizes(), t1.dtype());
     55 
     56         cout << "t2 = " << t2 << endl;
     57         cout << "t3 = " << t3 << endl;
     58     }
     59     // e.g. 2.8 设备
     60     {
     61         printTitle("e.g. 2.8 设备");
     62         torch::Tensor t1 = torch::randn({ 3, 3 }, torch::Device("cpu"));
     63         cout << "t1 = " << t1 << endl;
     64         auto device = torch::Device("cuda:0");
     65         torch::Tensor t2 = torch::randn({ 3, 3 }, torch::kF32).to(device);
     66         cout << "t2 = " << t2 << endl;
     67         cout << "t2.device = " << t2.device() << endl;
     68     }
     69     // e.g. 2.9 指针
     70     {
     71         printTitle("e.g. 2.9 指针");
     72         torch::Tensor t1 = torch::randn({ 3, 4, 5 });
     73         cout << t1 << endl;
     74         int nd = t1.ndimension(); // channels = 3;  获取维度的数目
     75         int nc = t1.size(0); // c
     76         int nw = t1.size(1); // w
     77         int nh = t1.size(2); // h
     78         cout << nd << " " << nc << endl;
     79         auto sz = t1.sizes(); // [c w h]
     80         cout << "sz = " << sz << endl;
     81         t1 = torch::randn({ 12 });
     82         torch::Tensor t2 = t1.view({ -1, 3 }); // 将其第二个维度变为3,第一个维度会自动计算,不过不能整除就会报错
     83         t2[0][0] = 99;    // 访问元素
     84         cout << "t2 = " << t2 << endl;
     85         float* t2_ptr = (float*)t2.data_ptr(); // 获取指针
     86         cout << "t2_ptr = " << t2_ptr << endl;
     87         void* t22_ptr = (void*)t2.data_ptr(); // 指针指针,地址不变
     88         cout << "t22_ptr = " << t22_ptr << endl;
     89         auto t222_ptr = t2.contiguous().data_ptr(); // 指针指针,地址不变
     90         cout << "t222_ptr = " << t222_ptr << endl;
     91         auto t2222_ptr = t2.transpose(0, 1).contiguous().data_ptr(); // 步长和维度不兼容,重新生成张量(即:会重新分配内存)
     92         cout << "t2222_ptr = " << t2222_ptr << endl;
     93     }
     94     // e.g. 2.10 mask
     95     {
     96         printTitle("e.g. 2.10 mask");
     97         torch::Tensor t1 = torch::randn({ 2, 3, 4 });
     98         cout << "t1 = " << t1 << endl;
     99         torch::Tensor ele = t1[1][2][3];
    100         cout << "ele = " << ele << endl;
    101         double ele_ = ele.item().toDouble(); // tensor 转 double
    102         cout << "ele_ = " << ele_ << endl;
    103         torch::Tensor mask = t1.ge(0);
    104         cout << "mask = " << mask << endl;
    105         torch::Tensor t2 = t1.masked_select(mask); // t2 是一个向量
    106         cout << "t2 =" << t2 << endl;
    107     }
    108     // e.g. 2.11 sqrt && sum
    109     {
    110         printTitle("e.g. 2.11 sqrt");
    111         torch::Tensor t1 = torch::randint(1, 9, { 3, 3 });
    112         cout << "t1 = " << t1 << endl;
    113         torch::Tensor t2 = t1.to(torch::kFloat32);
    114         torch::Tensor t3 = t2.sqrt(); // 操作不改变t2的值
    115         t3 = torch::sqrt(t2); // 操作不改变t2的值
    116         cout << "t3 = " << t3 << endl;
    117         t2.sqrt_();        // 平方根原地操作,修改自己的值
    118         cout << "t2 = " << t2 << endl;
    119 
    120         // 也可以调用默认的sum()成员函数
    121         cout << "t1 = " << t1 << endl;
    122         torch::Tensor sum1 = torch::sum(t1);    // 默认对所有的元素求和
    123         torch::Tensor sum2 = torch::sum(t1, 0); //  对第0维的元素求和,即:按列进行求和
    124         torch::Tensor sum3 = torch::sum(t1, { 1,0 }); // 写成{0, 1}会报编译错
    125         cout << "sum3 = " << sum3.item().toFloat() << endl;
    126 
    127         torch::Tensor mean1 = t1.mean();  // 对所有元素求平均,也可以用torch.mean函数
    128         torch::Tensor mean2 = t1.mean(0); // 对第0维的元素求平均
    129         // 写成{0, 1}会报编译错,同上
    130         torch::Tensor mean3 = torch::mean(t1, { 1, 0 }); // 对第0、1维元素求平均, mean.shape = 1*1
    131         cout << "mean1 = " << mean1.item().toFloat() << endl;
    132         cout << "mean2 = " << mean2 << endl;
    133         cout << "mean3 = " << mean3 << endl;
    134     }
    135     // e.g. 2.12 对应元素加、减、乘、除(其实都重载了运算符,自己取试一试)
    136     {
    137         printTitle("e.g. 2.12 ");
    138         torch::Tensor t1 = torch::rand({ 2, 3 });
    139         torch::Tensor t2 = torch::rand({ 2, 3 });
    140         torch::Tensor t3 = t1 + t2;
    141         torch::Tensor t4 = t1.sub(t2);
    142         torch::Tensor t5 = t1.mul(t2);
    143         torch::Tensor t6 = t1.div(2);
    144         cout << "t1 = " << t1 << endl;
    145         cout << "t2 = " << t2 << endl;
    146         cout << "t3 = " << t3 << endl;
    147         cout << "t4 = " << t4 << endl;
    148         cout << "t5 = " << t5 << endl;
    149         cout << "t6 = " << t6 << endl;
    150         t6.add_(1); // 会修改t6中的值
    151         cout << "t6 = " << t6 << endl;
    152     }
    153     // e.g. 2.13 min max argmax
    154     {
    155         printTitle("e.g. 2.13 min max argmax");
    156         torch::Tensor t1 = torch::randn({ 3, 4 }, torch::kFloat64);
    157         cout << "t1 = " << t1 << endl;
    158         torch::Tensor mask_argmax = torch::argmax(t1, 0); // 返回的是沿着第0个维度,极大值所在位置
    159         cout << "mask_argmax = " << mask_argmax << endl;
    160         // max
    161         std::tuple<torch::Tensor, torch::Tensor> maxVals = torch::max(t1, -1); //  函数调用,返回的是沿着最后一个维度,包含极大值和极大值所在位置的元组
    162         torch::Tensor mask_max = std::get<0>(maxVals); // max val
    163         torch::Tensor mask_max_idx = std::get<1>(maxVals); // index of maxVal
    164         cout << "mask_max = " << mask_max << endl;
    165         cout << "mask_max_idx = " << mask_max_idx << endl;
    166         // min
    167         std::tuple<torch::Tensor, torch::Tensor> minVals = t1.min(0); // 内置方法调用,返回的是沿着第0个维度,包含极小值和极小值所在位置的元组
    168         torch::Tensor mask_min = std::get<0>(minVals); // min val
    169         torch::Tensor mask_min_idx = std::get<1>(minVals);// index of minVal
    170         cout << "mask_min = " << mask_min << endl;
    171         cout << "mask_min_idx = " << mask_min_idx << endl;
    172         // sort
    173         std::tuple<torch::Tensor, torch::Tensor> sortVals = t1.sort(-1); // 沿着最后一个维度排序,返回排序后的张量和张量元素在该维度的原始位置
    174         torch::Tensor tensorVal = std::get<0>(sortVals);
    175         torch::Tensor tensorValIdx = std::get<1>(sortVals);
    176         cout << "tensorVal = " << tensorVal << endl;
    177         cout << "tensorValIdx = " << tensorValIdx << endl;
    178     }
    179     // e.g. 2.14 矩阵乘法
    180     {
    181         printTitle("e.g. 2.14 矩阵乘法");
    182         torch::Tensor t1 = torch::tensor({ {1, 2}, {3, 4} }, torch::kFloat64); // 2×2
    183         torch::Tensor t2 = torch::tensor({ {1, 1, 1}, {2, 3, 1} }, torch::kFloat64); // 2×3
    184         auto t3 = t1.mm(t2); // 矩阵乘法, torch::mm
    185         cout << "t1 = " << t1 << endl;
    186         cout << "t2 = " << t2 << endl;
    187         cout << "t3 = " << t3 << endl;
    188         //
    189         t1 = torch::randn({ 2, 3, 4 });
    190         t2 = torch::randn({ 2, 4, 3 });
    191         torch::Tensor t4 = t1.bmm(t2); // (迷你)批次矩阵乘法,返回结果为2×3×3,函数形式
    192         cout << "t1 = " << t1 << endl;
    193         cout << "t2 = " << t2 << endl;
    194         cout << "t4 = " << t4 << endl;
    195     }
    196     // e.g. 2.16 Tensor堆叠、拼接
    197     {
    198         printTitle("e.g. 2.16 Tensor堆叠、拼接");
    199         auto t1 = torch::randn({ 2, 3 });
    200         auto t2 = torch::randn({ 2, 3 });
    201         auto t3 = torch::stack({ t1, t2 }, -1); // 沿着最后一个维度做堆叠,返回大小为2×2×3的张量
    202         cout << "t1.sizes() = " << t1.sizes() << endl;
    203         cout << "t2.sizes() = " << t2.sizes() << endl;
    204         cout << "t3.sizes() = " << t3.sizes() << endl;
    205     }
    206     // e.g. 2.17 2.18  拓展、压缩维度
    207     {
    208         printTitle("e.g. 2.17 2.18 拓展维度");
    209         torch::Tensor t1 = torch::rand({ 3, 4 });
    210         cout << "t1.sizes() = " << t1.sizes() << endl;
    211         auto t11 =    t1.unsqueeze(-1); // 扩增最后一个维度
    212         cout << "t11.sizes() = " << t11.sizes() << endl;
    213         auto t12 = t1.unsqueeze(-1).unsqueeze(-1); // 继续扩增最后一个维度
    214         cout << "t12.sizes() = " << t12.sizes() << endl;
    215         auto t13 = t1.unsqueeze(1); // 在第1个维度插入新一个维度 -> 3*4*1
    216         cout << "t13.sizes() = " << t13.sizes() << endl;
    217 
    218         auto t2 = torch::rand({ 1, 3, 4, 1 });
    219         cout << "t2.sizes() = " << t2.sizes() << endl;
    220         auto t21 = t2.squeeze(); // 压缩所有大小为1的维度
    221         cout << "t21.sizes() = " << t21.sizes() << endl;
    222     }
    223     // e.g. 2.18 
    224     return 1;
    225 }
    View Code
    
    
    
     
     
     
     
    CV&DL
  • 相关阅读:
    linux内存-swap
    linux内存-buffer和cache
    Linux内存-内存管理机制oom_killer
    HTTPS(二)证书合法性校验
    HTTPS(一)基础及连接建立
    docker镜像(一)overlayfs
    DNS(三)全局流量调度
    建造者模式(Builder Pattern)
    抽象工厂模式(Abstract Factory)
    工厂方法模式(Factory Method Pattern)
  • 原文地址:https://www.cnblogs.com/winslam/p/14664042.html
Copyright © 2011-2022 走看看