zoukankan      html  css  js  c++  java
  • G2O曲线拟合1

    用G2O来拟合曲线,拟合模型:y = exp(a*x*x + b*x + c);

    首先利用opencv产生随机数,x_data, y_data;同时我们把随机数写入txt,通过matlab来拟合检验

    #include <iostream>
    #include<fstream>
    #include<iomanip>
    
    #include <g2o/core/base_vertex.h>
    #include <g2o/core/base_unary_edge.h>
    #include <g2o/core/block_solver.h>
    #include <g2o/core/optimization_algorithm_levenberg.h>
    #include <g2o/core/optimization_algorithm_gauss_newton.h>
    #include <g2o/core/optimization_algorithm_dogleg.h>
    #include <g2o/solvers/dense/linear_solver_dense.h>
    #include <Eigen/Core>
    #include <opencv2/core/core.hpp>
    #include <cmath>
    #include <chrono>
    
    using namespace std; 
    
    // 曲线模型的顶点,模板参数:优化变量维度和数据类型
    class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
    {
    public:
        // Eigen库为了使用SSE加速,所以内存分配上使用了128位的指针
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW// 参考 https://blog.csdn.net/rs_huangzs/article/details/50574141
    
        virtual void setToOriginImpl() // 顶点重置
        {
            _estimate << 0,0,0;
        }
        
        virtual void oplusImpl( const double* update ) // 顶点更新,X_k+1 = X_k + X_delta
        {
            _estimate += Eigen::Vector3d(update);
        }
        // 存盘和读盘:留空
        virtual bool read(istream& in) { return 0; }
        virtual bool write( ostream& out ) const { return 0; }
    };
    
    // 误差模型 模板参数:观测值维度,类型,连接顶点类型
    class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex>
    {
    public:
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW
        CurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {}
        // 计算曲线模型误差
        void computeError()
        {
            const CurveFittingVertex* v = static_cast<const CurveFittingVertex*> (_vertices[0]);
            const Eigen::Vector3d abc = v->estimate();
            _error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) );
        }
        virtual bool read( istream& in ) { return 0; }
        virtual bool write( ostream& out ) const { return 0; }
    public:
        double _x;  // x 值, y 值为 _measurement
    };
    
    int main( int argc, char** argv )
    {
        // 产生带噪声的数据
        double a=1.0, b=2.0, c=1.0;         // 真实参数值
        int N=100;                          // 数据点
        double w_sigma=1.0;                 // 噪声Sigma值
        cv::RNG rng;                        // OpenCV随机数产生器
        double abc[3] = {0,0,0};            // abc参数的估计值
    
        vector<double> x_data, y_data;      // 数据
        
        cout<<"generating data: "<<endl;
        for ( int i=0; i<N; i++ )
        {
            double x = i/100.0;
            x_data.push_back ( x );
            y_data.push_back (
                exp ( a*x*x + b*x + c ) + rng.gaussian ( w_sigma ) 
            );
            cout<<x_data[i]<<" "<<y_data[i]<<endl;
        }
        
        //将数据写入文本
        //创建文件
        fstream f("file_1.txt", ios::out);
        if (f.bad())
        {
            cout << "打开文件出错" << endl;
            return 0;
        }
        //写入x
        for (size_t i = 0; i < x_data.size(); i++)
        {
            f << x_data[i] << "  ";
        }
        f << endl;//换行
        //写入y
        for (size_t i = 0; i < y_data.size(); i++)
        {
            f << y_data[i] << " ";
        }
        //关闭文件
        f.close();
    
    
        // 构建图优化,先设定g2o
        typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1
        Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); // 线性方程求解器
        Block* solver_ptr = new Block( linearSolver );      // 矩阵块求解器
        // 梯度下降方法,从GN, LM, DogLeg 中选
        g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );
        //g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton(solver_ptr);
        //g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg(solver_ptr);
    
        g2o::SparseOptimizer optimizer;     // 图模型
        optimizer.setAlgorithm( solver );   // 设置求解器
        optimizer.setVerbose( true );       // 打开调试输出
        
        // 往图中增加顶点
        CurveFittingVertex* v = new CurveFittingVertex();
        v->setEstimate( Eigen::Vector3d(0,0,0) );//猜想初始值
        v->setId(0);
        optimizer.addVertex( v );
        
        // 往图中增加边
        for ( int i=0; i<N; i++ )
        {
            CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
            edge->setId(i);
            edge->setVertex( 0, v );                // 设置连接的顶点 //  set the ith vertex on the hyper-edge to the pointer supplied
            edge->setMeasurement( y_data[i] );      // 观测数值
            edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
            optimizer.addEdge( edge );
        }
        
        // 执行优化
        optimizer.initializeOptimization();
        optimizer.optimize(100);
        // 输出优化值
        Eigen::Vector3d abc_estimate = v->estimate();
        cout<<"estimated model: "<<abc_estimate.transpose()<<endl;
        
        return 0;
    }

    g2o拟合结果: 

    a = 0.890911;
    b = 2.1719;
    c = 0.943629;

    我们基于此,利用如下matlab代码,将随机数和G2O拟合结果可视化

    %%clear all
    close all
    clc
    load file_1.txt
    %% 待拟合数据
    temp = file_1;
    x1 = temp(1,:);
    y1 = temp(2,:);
    
    plot(x1,y1,'*'); hold on;
    
    %% plot the results of G2O
    syms x;
    a = 0.890911;
    b = 2.1719;
    c = 0.943629;
    x = 0:0.01:0.99;
    y = zeros(1,100);
    [m,n] = size(x);
    for i = 1:1:n
       y(i) = exp( a*x(i)*x(i) + b*x(i) + c );
    end
    plot(x,y);

    最后,再看看matlab拟合工具箱拟合结果(其实工具箱强得一笔,随便用其他模型也能达到完美得置信区间和残差):

  • 相关阅读:
    asp.net+ tinymce粘贴word
    jsp+ tinymce粘贴word
    jsp+ ueditor word粘贴上传
    php+ ueditor word粘贴上传
    asp.net+ueditor word粘贴上传
    word写博客
    【转】如何使用离线博客发布工具发布CSDN的博客文章
    用word发布CSDN文章
    用word发CSDN blog,免去插图片的烦恼
    如何实现word上传服务器
  • 原文地址:https://www.cnblogs.com/winslam/p/9036829.html
Copyright © 2011-2022 走看看