题意
此处有n盏灯,编号为1~n,每盏灯的亮度都是唯一的,且在1~n范围之间,现已知m对灯之间的关系:a b ,说明灯a的亮度比灯b小,求出每盏灯的亮度,要求字典序最小(编号小的灯亮度尽量小),使之满足m对关系,如果不存在,输出-1
解题思路
每对灯的关系:a b ,说明灯a的亮度比灯b小,同时也说明a的完成时间比b早(AOV网中的概念),这种关系可以用拓扑排序很好地处理,而由于这个题目要求字典序最小,为此将队列改为优先队列,使得编号大的灯先出队,并为其赋予较大的拓扑序,这样便可以使得字典序最小了,最后我们将所有点都赋予了拓扑序,随后和m对关系一一比较,判断是否满足要求,满足则输出所得拓扑序,否则输出-1
代码区
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #include<string> #include<fstream> #include<vector> #include<stack> #include <map> #include <iomanip> #define bug cout << "**********" << endl #define show(x, y) cout<<"["<<x<<","<<y<<"] " #define LOCAL = 1; using namespace std; typedef long long ll; const ll inf = 1e18 + 10; const ll mod = 1e9 + 7; const int Max = 1e6 + 10; const int Max2 = 3e2 + 10; int n, m; vector<int> edge[Max2]; //邻接表建图 pair<int, int> way[Max]; //存储m对关系 map<pair<int,int>,bool>mp; //用于判断重边 int in_d[Max2]; //记录入度 int id[Max2], now; //记录拓扑序 void init() { for (int i = 0; i < Max2; i++) edge[i].clear(); memset(id, 0, sizeof(id)); now = n; memset(in_d,0,sizeof(in_d)); mp.clear(); } void topoSort() { priority_queue<int> q; for (int i = n; i >= 1; i--) { if (in_d[i] == 0) q.push(i); } while (!q.empty()) { int u = q.top(); q.pop(); id[u] = now--; for(int i = 0 ;i < (int)edge[u].size() ;i ++) { int v = edge[u][i]; if(id[v]) continue; in_d[v]--; if(in_d[v] == 0) { q.push(v); } } } } int main() { #ifdef LOCAL // freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); #endif int T; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); init(); bool ok = true; for (int i = 1, u, v; i <= m; i++) { scanf("%d%d", &u, &v); if(u == v) { ok = false; continue; } if(!mp[make_pair(u,v)]) { edge[v].push_back(u); in_d[u]++; } way[i] = make_pair(u, v); mp[way[i]] = true; } topoSort(); for (int i = n; i >= 1; i--) { if (id[i] == 0) { id[i] = now--; } } for (int i = 1; i <= m; i++) { if (id[way[i].first] > id[way[i].second]) { ok = false; break; } } if (!ok) { printf("-1 "); } else { for (int i = 1; i <= n; i++) { printf("%d%c", id[i], i != n ? ' ' : ' '); } } } return 0; }