zoukankan      html  css  js  c++  java
  • ProE常用曲线方程:Python Matplotlib 版本代码(蝴蝶曲线)

             花纹的生成可以使用贴图的方式,同样也可以使用方程,本文列出了几种常用曲线的方程式,以取代贴图方式完成特定花纹的生成。

             注意极坐标的使用.................

             前面部分基础资料,参考:Python:Matplotlib 画曲线和柱状图(Code)

             Pyplot教程:https://matplotlib.org/gallery/index.html#pyplots-examples 

             

            顾名思义,蝴蝶曲线(Butterfly curve )就是曲线形状如同蝴蝶。蝴蝶曲线如图所示,以方程描述,是一条六次平面曲线。如果大家觉得这个太过简单,别着急,还有第二种。如图所示,以方程描述,这是一个极坐标方程。通过改变这个方程中的变量θ,可以得到不同形状与方向的蝴蝶曲线。如果再施以复杂的组合和变换,我们看到的就完全称得上是一幅艺术品了。

           

    Python代码:

    import numpy as np
    import matplotlib.pyplot as plt
    import os,sys,caffe
    
    import matplotlib as mpl  
    from mpl_toolkits.mplot3d import Axes3D  #draw lorenz attractor
    # %matplotlib inline
    from math import sin, cos, pi
    import math
    
    def mainex():
        #drawSpringCrurve();#画柱坐标系螺旋曲线
        #HelicalCurve();#采用柱坐标系#尖螺旋曲线
        #Votex3D();
        #phoenixCurve();
        #ButterflyCurve();
        #ButterflyNormalCurve();
        #dicareCurve2d();
        #WindmillCurve3d();
        #HelixBallCurve();#球面螺旋线
        #AppleCurve();
        #HelixInCircleCurve();#使用scatter,排序有问题
        seperialHelix();
    
    def drawSpringCrurve():
        #碟形弹簧
        #圓柱坐标 
        #方程:
        #import matplotlib as mpl
        #from mpl_toolkits.mplot3d import Axes3D
        #import numpy as np
        #import matplotlib.pyplot as plt
        mpl.rcParams['legend.fontsize'] = 10;
        
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        # Prepare arrays x, y, z
        #theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
        #z = np.linspace(-2, 2, 100)
        #r = z**2 + 1
        
        t = np.arange(0,100,1);
        r = t*0 +20;
        theta = t*3600 ;
        
        z = np.arange(0,100,1);
        for i in range(100):
            z[i] =(sin(3.5*theta[i]-90))+24*t[i];
        
        x = r * np.sin(theta);
        y = r * np.cos(theta);
        
        ax.plot(x, y, z, label='SpringCrurve');
        ax.legend();
        
        plt.show();
        
    def HelicalCurve():
        #螺旋曲线#采用柱坐标系
        t = np.arange(0,100,1);
        r =t ;
        theta=10+t*(20*360);
        z =t*3;
    
        x = r * np.sin(theta);
        y = r * np.cos(theta);
        
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='HelicalCurve');
        ax.legend();
        
        plt.show();
    
    
    def ButterflyCurve():
        #蝶形曲线,使用球坐标系#或许公式是错误的,应该有更加复杂的公式
        t = np.arange(0,4,0.01);
        
        r = 8 * t;
        theta = 3.6 * t * 2*1 ;
        phi   = -3.6 * t * 4*1;
        
        x = t*1;
        y = t*1;
        #z = t*1;
        z =0
        for i in range(len(t)):
            x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
            y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
            #z[i] = r[i] * np.cos(theta[i]);
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='ButterflyCurve');
        #ax.scatter(x, y, z, label='ButterflyCurve');
        ax.legend();
        
        plt.show();
        
    def ButterflyNormalCurve():
        #蝶形曲线,使用球坐标系#或许公式是错误的,应该有更加复杂的公式
        #螺旋曲线#采用柱坐标系
        #t = np.arange(0,100,1);
        
        theta=np.arange(0,6,0.1);#(0,72,0.1);
        r =theta*0;
        z =theta*0;
    
        x =theta*0;
        y =theta*0;
        for i in range(len(theta)):
            r[i] = np.power(math.e,sin(theta[i]))- 2*cos(4*theta[i]) 
            + np.power( sin(1/24 * (2*theta[i] -pi ) ) , 5 );
            #x[i] = r[i] * np.sin(theta[i]);
            #y[i] = r[i] * np.cos(theta[i]);
        x = r * np.sin(theta);
        y = r * np.cos(theta);
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='ButterflyNormalCurve');
        ax.legend();
        
        plt.show();
        
    def phoenixCurve():
        #蝶形曲线,使用球坐标系
        t = np.arange(0,100,1);
        
        r = 8 * t;
        theta = 360 * t * 4 ;
        phi   = -360 * t * 8;
        
        x = t*1;
        y = t*1;
        z = t*1;
        for i in range(len(t)):
            x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
            y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
            z[i] = r[i] * np.cos(theta[i]);
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='phoenixCurve');
        ax.legend();
        
        plt.show();
        
    def dicareCurve2d():
        
        r = np.arange(0, 2, 0.01)
        theta = 2 * np.pi * r
        
        ax = plt.subplot(111, projection='polar')
        ax.plot(theta, r)
        ax.set_rmax(2)
        ax.set_rticks([0.5, 1, 1.5, 2])  # Less radial ticks
        ax.set_rlabel_position(-22.5)  # Move radial labels away from plotted line
        ax.grid(True)
        
        ax.set_title("dicareCurve2d", va='bottom')
        plt.show();
    
    def WindmillCurve3d():
        #风车曲线
        t = np.arange(0,2,0.01);
        r =t*0+1 ;
        
        #r=1 
        ang =36*t;#ang =360*t;
        s =2*pi*r*t;
        
        x = t*1;
        y = t*1;
        for i in range(len(t)):
            x[i] = s[i]*cos(ang[i]) +s[i]*sin(ang[i]) ;
            y[i] = s[i]*sin(ang[i]) -s[i]*cos(ang[i]) ;
            
        z =t*0;
        
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='WindmillCurve3d');
        ax.legend();
        
        plt.show();
        
    def HelixBallCurve():
        #螺旋曲线,使用球坐标系
        t = np.arange(0,2,0.005);
        r =t*0+4 ;
        theta =t*1.8 
        phi =t*3.6*20
        
        x = t*1;
        y = t*1;
        z = t*1;
        for i in range(len(t)):
            x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
            y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
            z[i] = r[i] * np.cos(theta[i]);
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='HelixBallCurve');
        ax.legend();
        
        plt.show();
        
    def seperialHelix():
        #螺旋曲线,使用球坐标系
        t = np.arange(0,2,0.1);
        n = np.arange(0,2,0.1);
        r =t*0+4 ;
        theta =n*1.8 ;
        phi =n*3.6*20;
        
        x = t*0;
        y = t*0;
        z = t*0;
        for i in range(len(t)):
            x[i] = r[i] * np.sin(theta[i])*np.cos(phi[i]);
            y[i] = r[i] * np.sin(theta[i])*np.sin(phi[i]);
            z[i] = r[i] * np.cos(theta[i]);
            
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='ButterflyCurve');
        ax.legend();
        
        plt.show();
    
    def AppleCurve():
        #螺旋曲线
        t = np.arange(0,2,0.01);
    
        l=2.5 
        b=2.5 
        x =  t*1;
        y =  t*1;
        z =0;#z=t*0;
        n = 36
        for i in range(len(t)):
            x[i]=3*b*cos(t[i]*n)+l*cos(3*t[i]*n) 
            y[i]=3*b*sin(t[i]*n)+l*sin(3*t[i]*n)
    
        #x = r * np.sin(theta);
        #y = r * np.cos(theta);
        
        mpl.rcParams['legend.fontsize'] = 10;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='AppleCurve');
        ax.legend();
        
        plt.show();
    
    def HelixInCircleCurve():
        #园内螺旋曲线#采用柱坐标系
        t = np.arange(-1,1,0.01);
        
        theta=t*36 ;#360 deta 0.005鸟巢网 #36 deta 0.005 圆内曲线
        x =  t*1;
        y =  t*1;
        z =  t*1;
        r =  t*1;
        n = 1.2
        for i in range(len(t)):
            r[i]=10+10*sin(n*theta[i]);
            z[i]=2*sin(n*theta[i]);
            x[i] = r[i] * np.sin(theta[i]);
            y[i] = r[i] * np.cos(theta[i]);
        
        mpl.rcParams['legend.fontsize'] = 3;
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        
        ax.plot(x, y, z, label='HelixInCircleCurve');
        #ax.scatter(x, y, z, label='HelixInCircleCurve');
        ax.legend();
        
        plt.show();
      
    def Votex3D():
    
        def midpoints(x):
            sl = ()
            for i in range(x.ndim):
                x = (x[sl + np.index_exp[:-1]] + x[sl + np.index_exp[1:]]) / 2.0
                sl += np.index_exp[:]
            return x
        
        # prepare some coordinates, and attach rgb values to each
        r, g, b = np.indices((17, 17, 17)) / 16.0
        rc = midpoints(r)
        gc = midpoints(g)
        bc = midpoints(b)
        
        # define a sphere about [0.5, 0.5, 0.5]
        sphere = (rc - 0.5)**2 + (gc - 0.5)**2 + (bc - 0.5)**2 < 0.5**2
        
        # combine the color components
        colors = np.zeros(sphere.shape + (3,))
        colors[..., 0] = rc
        colors[..., 1] = gc
        colors[..., 2] = bc
        
        # and plot everything
        fig = plt.figure();
        ax = fig.gca(projection='3d');
        ax.voxels(r, g, b, sphere,
                  facecolors=colors,
                  edgecolors=np.clip(2*colors - 0.5, 0, 1),  # brighter
                  linewidth=0.5);
        ax.set(xlabel='r', ylabel='g', zlabel='b');
        plt.show();
        
    def drawFiveFlower():
        theta=np.arange(0,2*np.pi,0.02)  
        #plt.subplot(121,polar=True)  
        #plt.plot(theta,2*np.ones_like(theta),lw=2)  
        #plt.plot(theta,theta/6,'--',lw=2)  
        #plt.subplot(122,polar=True)  
        plt.subplot(111,polar=True)  
        plt.plot(theta,np.cos(5*theta),'--',lw=2)  
        plt.plot(theta,2*np.cos(4*theta),lw=2)  
        plt.rgrids(np.arange(0.5,2,0.5),angle=45)  
        plt.thetagrids([0,45,90]);
        
        plt.show(); 
        
    
    if __name__ == '__main__':
        import argparse
        mainex();

    画图结果:

       

      


       

       

        



  • 相关阅读:
    C++ string 类的 find 方法实例详解
    linux系统中errno与error对照表
    tshark (wireshark)笔记
    自己签发免费ssl证书
    Go语言练习:网络编程实例——简易图片上传网站
    java开源工具包-Jodd框架
    数据库性能瓶颈解决方案
    [转载]如何快速学习一门技术
    [转载]IBM公司发布了最新的power7服务器p750 p770 p780
    计算机组成原理 — 指令系统
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199878.html
Copyright © 2011-2022 走看看