原文链接:OpenCV3 Java 机器学习使用方法汇总
前言
按道理来说,C++版本的OpenCV训练的版本XML文件,在java中可以无缝使用。但要注意OpenCV本身的版本问题。从2.4 到3.x版本出现了很大的改变,XML文件本身的存储格式本身也不同,不能通用。
opencv提供了非常多的机器学习算法用于研究。这里对这些算法进行分类学习和研究,以抛砖引玉。这里使用的机器学习算法包括:人工神经网络,boost,决策树,最近邻,逻辑回归,贝叶斯,随机森林,SVM等算法等。
机器学习的过程相同,都要经历1、收集样本数据sampleData2.训练分类器mode3.对测试数据testData进行预测。这里使用一个在别处看到的例子,利用身高体重等原始信息预测男女的概率。通过一些简单的数据学习,用测试数据预测男女概率。
实例代码:
import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.TermCriteria; import org.opencv.ml.ANN_MLP; import org.opencv.ml.Boost; import org.opencv.ml.DTrees; import org.opencv.ml.KNearest; import org.opencv.ml.LogisticRegression; import org.opencv.ml.Ml; import org.opencv.ml.NormalBayesClassifier; import org.opencv.ml.RTrees; import org.opencv.ml.SVM; import org.opencv.ml.SVMSGD; import org.opencv.ml.TrainData; public class ML { public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // 训练数据,两个维度,表示身高和体重 float[] trainingData = { 186, 80, 185, 81, 160, 50, 161, 48 }; // 训练标签数据,前两个表示男生0,后两个表示女生1,由于使用了多种机器学习算法,他们的输入有些不一样,所以labelsMat有三种 float[] labels = { 0f, 0f, 0f, 0f, 1f, 1f, 1f, 1f }; int[] labels2 = { 0, 0, 1, 1 }; float[] labels3 = { 0, 0, 1, 1 }; // 测试数据,先男后女 float[] test = { 184, 79, 159, 50 }; Mat trainingDataMat = new Mat(4, 2, CvType.CV_32FC1); trainingDataMat.put(0, 0, trainingData); Mat labelsMat = new Mat(4, 2, CvType.CV_32FC1); labelsMat.put(0, 0, labels); Mat labelsMat2 = new Mat(4, 1, CvType.CV_32SC1); labelsMat2.put(0, 0, labels2); Mat labelsMat3 = new Mat(4, 1, CvType.CV_32FC1); labelsMat3.put(0, 0, labels3); Mat sampleMat = new Mat(2, 2, CvType.CV_32FC1); sampleMat.put(0, 0, test); MyAnn(trainingDataMat, labelsMat, sampleMat); MyBoost(trainingDataMat, labelsMat2, sampleMat); MyDtrees(trainingDataMat, labelsMat2, sampleMat); MyKnn(trainingDataMat, labelsMat3, sampleMat); MyLogisticRegression(trainingDataMat, labelsMat3, sampleMat); MyNormalBayes(trainingDataMat, labelsMat2, sampleMat); MyRTrees(trainingDataMat, labelsMat2, sampleMat); MySvm(trainingDataMat, labelsMat2, sampleMat); MySvmsgd(trainingDataMat, labelsMat2, sampleMat); } // 人工神经网络 public static Mat MyAnn(Mat trainingData, Mat labels, Mat testData) { // train data using aNN TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); Mat layerSizes = new Mat(1, 4, CvType.CV_32FC1); // 含有两个隐含层的网络结构,输入、输出层各两个节点,每个隐含层含两个节点 layerSizes.put(0, 0, new float[] { 2, 2, 2, 2 }); ANN_MLP ann = ANN_MLP.create(); ann.setLayerSizes(layerSizes); ann.setTrainMethod(ANN_MLP.BACKPROP); ann.setBackpropWeightScale(0.1); ann.setBackpropMomentumScale(0.1); ann.setActivationFunction(ANN_MLP.SIGMOID_SYM, 1, 1); ann.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER + TermCriteria.EPS, 300, 0.0)); boolean success = ann.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("Ann training result: " + success); // ann.save("D:/bp.xml");//存储模型 // ann.load("D:/bp.xml");//读取模型 // 测试数据 Mat responseMat = new Mat(); ann.predict(testData, responseMat, 0); System.out.println("Ann responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.size().height; i++) { if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] >= 1) System.out.println("Girl "); if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] < 1) System.out.println("Boy "); } return responseMat; } // Boost public static Mat MyBoost(Mat trainingData, Mat labels, Mat testData) { Boost boost = Boost.create(); // boost.setBoostType(Boost.DISCRETE); boost.setBoostType(Boost.GENTLE); boost.setWeakCount(2); boost.setWeightTrimRate(0.95); boost.setMaxDepth(2); boost.setUseSurrogates(false); boost.setPriors(new Mat()); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = boost.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("Boost training result: " + success); // boost.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat(); float response = boost.predict(testData, responseMat, 0); System.out.println("Boost responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // 决策树 public static Mat MyDtrees(Mat trainingData, Mat labels, Mat testData) { DTrees dtree = DTrees.create(); // 创建分类器 dtree.setMaxDepth(8); // 设置最大深度 dtree.setMinSampleCount(2); dtree.setUseSurrogates(false); dtree.setCVFolds(0); // 交叉验证 dtree.setUse1SERule(false); dtree.setTruncatePrunedTree(false); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = dtree.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("Dtrees training result: " + success); // dtree.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat(); float response = dtree.predict(testData, responseMat, 0); System.out.println("Dtrees responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // K最邻近 public static Mat MyKnn(Mat trainingData, Mat labels, Mat testData) { final int K = 2; TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); KNearest knn = KNearest.create(); boolean success = knn.train(trainingData, Ml.ROW_SAMPLE, labels); System.out.println("Knn training result: " + success); // knn.save("D:/bp.xml");//存储模型 // find the nearest neighbours of test data Mat results = new Mat(); Mat neighborResponses = new Mat(); Mat dists = new Mat(); knn.findNearest(testData, K, results, neighborResponses, dists); System.out.println("results: " + results.dump()); System.out.println("Knn neighborResponses: " + neighborResponses.dump()); System.out.println("dists: " + dists.dump()); for (int i = 0; i < results.height(); i++) { if (results.get(i, 0)[0] == 0) System.out.println("Boy "); if (results.get(i, 0)[0] == 1) System.out.println("Girl "); } return results; } // 逻辑回归 public static Mat MyLogisticRegression(Mat trainingData, Mat labels, Mat testData) { LogisticRegression lr = LogisticRegression.create(); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = lr.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("LogisticRegression training result: " + success); // lr.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat(); float response = lr.predict(testData, responseMat, 0); System.out.println("LogisticRegression responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // 贝叶斯 public static Mat MyNormalBayes(Mat trainingData, Mat labels, Mat testData) { NormalBayesClassifier nb = NormalBayesClassifier.create(); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = nb.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("NormalBayes training result: " + success); // nb.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat(); float response = nb.predict(testData, responseMat, 0); System.out.println("NormalBayes responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // 随机森林 public static Mat MyRTrees(Mat trainingData, Mat labels, Mat testData) { RTrees rtrees = RTrees.create(); rtrees.setMaxDepth(4); rtrees.setMinSampleCount(2); rtrees.setRegressionAccuracy(0.f); rtrees.setUseSurrogates(false); rtrees.setMaxCategories(16); rtrees.setPriors(new Mat()); rtrees.setCalculateVarImportance(false); rtrees.setActiveVarCount(1); rtrees.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, 5, 0)); TrainData tData = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = rtrees.train(tData.getSamples(), Ml.ROW_SAMPLE, tData.getResponses()); System.out.println("Rtrees training result: " + success); // rtrees.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat(); rtrees.predict(testData, responseMat, 0); System.out.println("Rtrees responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // 支持向量机 public static Mat MySvm(Mat trainingData, Mat labels, Mat testData) { SVM svm = SVM.create(); svm.setKernel(SVM.LINEAR); svm.setType(SVM.C_SVC); TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0); svm.setTermCriteria(criteria); svm.setGamma(0.5); svm.setNu(0.5); svm.setC(1); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels); boolean success = svm.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses()); System.out.println("Svm training result: " + success); // svm.save("D:/bp.xml");//存储模型 // svm.load("D:/bp.xml");//读取模型 Mat responseMat = new Mat(); svm.predict(testData, responseMat, 0); System.out.println("SVM responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } // SGD支持向量机 public static Mat MySvmsgd(Mat trainingData, Mat labels, Mat testData) { SVMSGD Svmsgd = SVMSGD.create(); TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0); Svmsgd.setTermCriteria(criteria); Svmsgd.setInitialStepSize(2); Svmsgd.setSvmsgdType(SVMSGD.SGD); Svmsgd.setMarginRegularization(0.5f); boolean success = Svmsgd.train(trainingData, Ml.ROW_SAMPLE, labels); System.out.println("SVMSGD training result: " + success); // svm.save("D:/bp.xml");//存储模型 // svm.load("D:/bp.xml");//读取模型 Mat responseMat = new Mat(); Svmsgd.predict(testData, responseMat, 0); System.out.println("SVMSGD responseMat: " + responseMat.dump()); for (int i = 0; i < responseMat.height(); i++) { if (responseMat.get(i, 0)[0] == 0) System.out.println("Boy "); if (responseMat.get(i, 0)[0] == 1) System.out.println("Girl "); } return responseMat; } }
备注:作者的代码运行无误,可直接测试。