zoukankan      html  css  js  c++  java
  • 三维重建12:室内三维物体的位姿识别论文列表

              在三维目标位姿识别的通路搭建过程中,使用到了下面列举的论文,其他使用到的方法相关性不是特别强,因此暂时没有列举出来。其中,有些论文没卵用,只是用来灌水的,看一下即可,不用深究。

             四年前的论文列表拿出来,用来怀念一下大笑

    参考文献:

    [1] A. Janoch, S. Karayev, Y. Jia, J. Barron, M. Fritz, K. Saenko, “A category-level 3-d object dataset: Putting the kinect to work,” in ICCV Workshops 2011, pp. 1168–1174

    [2] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multiview rgb-d object dataset,” in ICRA 2011. Workshops, pp. 1817–1824,

    [3] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL)”,in Proc. IEEE ICRA 2011, Shanghai,China, May 9–13, 2011, pp. 1–4

    [4] Walter Wohlkinger , Aitor Aldoma and Radu B. Rusu and Markus , “3D Net_Large-scale object class recognition from CAD models”, Saint Paul,MN, May 14-18,2012,pp.5384-5391.

    [5] ZB Liu, SH Bu, K Zhou, And..,“A Survey on Partial Retrieval of 3D Shapes ”.Journal of Computer ” 2013 - Springer .

    [6] L. Bo, K. Lai, X. Ren, and D. Fox, “Object recognition with hierarchical kernel descriptors.” in CVPR 2011, June 20-25, 2011,.Providence , RI. pp. 1729-1736.

    [7] Byung-soo Kim,Shili Xu,Silvio Savarese , “Accurate Localization of 3D Objects from RGB-D Data Using Segmentation Hypotheses” ,in CVPR 2013.

    [8] http://www.microsoft.com/en-us/kinectforwindows/  

    [9] K. Lai, L. Bo,, and ., “A large-scale hierarchical multi view rgb-d object dataset”, ICRA 2011, pp. 1817–1824.

    [10] Tierny J, Vandeborre JP, Daoudi M (2009), Partial 3D shape retrieval by reeb pattern unfolding ”, Comput Graph Forum 28(1):41–55.

    [11] Atmosukarto, I., and...“3D Object Retrieval Using Salient Views”, Proceedings of MIR 2010, March 2010.

    [12] Shahram Izadi, David Kim, Otmar Hilliges, “Kinect Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera ”,ACM Symposium on User Interface Software and Technology, October 2011 .

    [13] Yichen Yang ,Wright, J. ,Lei Wu , Xian-Sheng Hua , Yi Ma, “Compact Projection :Simple and Efficient Near Neighbor Search with Practical memory ”, CVPR 2010. San Francisco, CA . pp. 3477 – 3484.

    [14] Saurabh Gupta, Pablo Arbel′aez, and Jitendra Malik, ‘Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images’ , CVPR2013. University of California, Berkeley - Berkeley, CA 94720  {sgupta, arbelaez, malik}@eecs.berkeley.edu .

    [15] J. Carreira and C. Sminchisescu, “Constrained parametric min-cuts for automatic object segmentation,” in CVPR 2010 , pp. 3241–3248.

    [16] Wohlkinger W. , Vision4Robot. Group, Vienna Univ. of  Technol., Vienna, Austria;Vincze, M,  “Ensemble of Shape Functions for 3D Object Classification.” 2011 IEEE (ROBIO), Dec. 7-11 2011 .pp. 2987 - 2992

    [17] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, “Fast 3D Recognition and pose using the ViewPoint Feature Histogram.”  Willow Garage 68 Willow Rd., Menlo Park, CA 94025, USA frusu, bradski, thibaux, hsug@willowgarage.com.

    [18] Besl, P.J;General Motors Res. Labs., Warren, MI, USA; McKay Neil D.“A method for registration of 3-D shape”, Pattern Analysis and Machine Intelligence, Volume:14 , Issue: 2 .

    [19] Ivan Dryanovski, Carlos Jaramillo and... “Incremental Registration of RGB-D Images.” 2012 IEEE International Conference on Robotics and Automation River Centre, Saint Paul, Minnesota, USA.  May 14-18, 2012.

    [20] http://www-graphics.stanford.edu/data/3Dscanrep/

    [21] R.Osada , T. Funkhouser , B. Chazelle , and D. Dobkin .“Matching 3d models with shape distributions” , In International Conference on Shape Modeling and Applications, SMI 2001 .pages 154 –166, May 2001.


  • 相关阅读:
    spring学习之@SessionAttributes
    Spring MVC @SessionAttributes注解
    SpringBoot yml 配置 多配置文件,开发环境,生产环境配置文件分开
    java 常用集合list与Set、Map区别及适用场景总结
    JAVA中String.format的用法 格式化字符串,格式化数字,日期时间格式化,
    Spring注解详解@Repository、@Component、@Service 和 @Constroller
    使用idea 在springboot添加本地jar包的方法本地运行有效,一旦需要打jar就会报错,这就需要在
    使用idea 在springboot添加本地jar包的方法 部署的时候本地jar没有包含的解决方法
    IDEA 快速将spring boot项目打包成jar包,简单快速有效
    java 泛型详解-绝对是对泛型方法讲解最详细的,没有之一
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199934.html
Copyright © 2011-2022 走看看