zoukankan      html  css  js  c++  java
  • 三维重建面试1-位姿追踪:单应矩阵、本质矩阵和基本矩阵

            从今天起,好好复习一下面试到的题目,把研究生时期学习的,工作时间忘记的东西再补回来。

            本文所写与原文相距甚远,如有疑问,请拜访原文。未经允许大量盗图,如有不满,请联系删除。

            原文链接:单应矩阵Homograph matrix、本质矩阵Fundamental matrix、基本矩阵essential matrix——游振兴

            在单目重建中,位姿求解一般应用的为本质矩阵。  在小型室内场景重建过程中,通常状态下,使用非退化状态下两帧得到的匹配点,可以通过

    公式:        p2^T *F *p1=0

           根据匹配对p1、p2求解F,进而求出相机位姿变换 R、t 。


    1.  透视投影/中心投影

            底片生成:相机模型总结为透视投影,空间点P通过中心投影方式落到焦距 f 固定的底片上,同时丢掉了深度信息。

            相机内参:定焦固定头相机会有一个固定的投影关系,其中的参数为相机内参。其他扩展功能相机的内参需要更多的信息获取。

            投影模型:物体标记为稀疏点模型之后,在世界坐标系中相机以任一位姿(R,t)观察模型,总能得到唯一的二维平面点位置集合(  S(p) )。

          

            真空相机模型中,三维点集到图像底片,理论上遵循透射投影关系,相机表示为内参矩阵K,坐标转换关系为:

           

            点集映射到底片上时丢失深度,其中f为相机焦距。dx,dy为像元尺寸,u0,v0为图像中心。 fx = f/dx ,fy = f/dy 分别为x轴和y轴上的归一化焦距。内参矩阵一般使用事先标定的方法。


    2. PNP perspective-n-point

            N点透视,给出一个世界坐标系标定的物体/三维点集合。依据透射关系,根据平面图像/N个二维投影点的位置来推算相机的观察者位姿,为PNP。

           文章:使用OpenCV PNP 


    3. 核面约束

            相机经过位姿转换,通过对同一个物体和同一组点观察得到两幅图像,同一组点在两幅图片中位置和顺序不同,但满足相机透视的 核面约束。

         

    图3.1


          核面约束:

                 上图中那个等于0的方程:p^T *F*p=0;

           基本矩阵约束关系表现为:


            这里的基本矩阵约束称为核线约束,如上图3.1,如果两帧之间的一个点坐标,外参矩阵已知,则空间点在另外一帧的坐标被约束在一条极线上,可以用来缩小图像匹配点的搜索范围。基本矩阵也可以用来计算内参矩阵。


           求取位姿:根据一组匹配的点集和极线约束可以得到一个相对固定的位姿转换( R, t )。

           本质矩阵:其中E矩阵为本质矩阵 Essential Matrix。理论上旋转、平移共有6个自由度(3个旋转,3个平移),因尺度等价,E有5个自由度(z约束为1)。求解一般使用8点法,通过SVD分解,恢复出R,t。

            基本矩阵:其中F矩阵为基本矩阵 Fundamentl Matrix。根据内参矩阵和本质矩阵,解析出基本矩阵。


    4. 相机外参

           在小型室内场景重建过程中,通常状态下,使用非退化状态下两帧得到的匹配点,可以通过

           公式:        p2^T *F *p1=0

           根据匹配对p1、p2求解F,进而求出相机外参——位姿变换 R、t 。

           本质矩阵是相对相机位姿的简单函数:

                         E= S(t)R

           相机运动一般很难测量,且相机有可能未被标定,不能直接用于计算本质矩阵。一般是使用八点法,在E矩阵的线性框架下求解。


    5. 退化现象/斜面投影

            对一个平面/一组平面上的点进行不同位姿观察,依然会得到两个投影面/两组投影点,这对应了三维稀疏场景重建?SLAM中的退化问题。

           

    约束关系变化为:

        

        

    其中H矩阵为单应矩阵Homograph Matrix。


    5. 基本矩阵Fundamental Matrix、本质矩阵Essential Matrix、单应矩阵 Homograph Matrix


          5.1 Essential Matrix    

                 E= t ^ R 为3*3的矩阵,奇异值为 [ u, u, 0] ^ T 的形式。为本质矩阵的内在性质。

                 性质:理论上综合旋转、平移共有6个自由度,因尺度等价,E有5个自由度。

                 求解:一般使用8点法,通过SVD分解,恢复出R,t 。

         5.2 Fundamental Matrix

                基本矩阵F和E只差了一个相机内参    F = K^(-T) *E *K^(-1) ,如果需要,直接带入求解。

         5.3 Homograph Matrix

               单应矩阵的定义与R、t、平面参数相关,单应矩阵为3*3的矩阵,自由度为8,求解的思路和E、F相似。

               求解:可用一组不共线的四个匹配点来计算矩阵H。


    总结:

              根据图像来估计位姿,一般称之为位姿追踪。非退化状态下可是根据匹配点求解Essential Matrix ,退化状态下课根据匹配点来求解 Homograph Matrix。用于实时计算位姿。



  • 相关阅读:
    第09组(71) Alpha冲刺 (3/6)
    第09组 Alpha冲刺 (2/6)
    第09组 Alpha冲刺 (1/6)
    第09组(71)需求分析报告
    第07组 Beta冲刺(1/5)
    第07组 Alpha冲刺 总结
    第07组 Alpha冲刺 (6/6)
    第07组 Alpha冲刺 (5/6)
    第五次作业
    第07组 Alpha冲刺 (4/6)
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199947.html
Copyright © 2011-2022 走看看