前言:
三维点云为三维欧式空间点的集合。对点云的形状描述若使用局部特征,则可分为两种:固定世界坐标系的局部描述和寻找局部主方向的局部描述,ROPS特征为寻找局部主方向的特征描述。
1.寻找主方向(对XYZ轴经过特定旋转)LFR:
<1>.计算法线特征:这一步是非常耗计算量的,若达到可以接受的法线精度,此过程几乎占据了 整个计算过程的50%;可选择的方法有 使用空间树索引建立近邻域,对近邻平面拟合,平面的参数方向既是法线一个方向。
<2>.进行多边形重建:利用贪婪投影的方法进行三角形重建,这个事一个调参数的过程,没有可以完全的方法。
参数有:
gp3.setSearchMethod (treeNor); gp3.setSearchRadius (Gp3PolyParam.SearchRadius);// Set 最大搜索半径 gp3.setMu (Gp3PolyParam.MuTypeValue);// Set typical values gp3.setMaximumNearestNeighbors (Gp3PolyParam.MaximumNearestNeighbors); gp3.setMaximumSurfaceAngle (Gp3PolyParam.MaximumSurfaceAngle); // 45 度 gp3.setMinimumAngle ( Gp3PolyParam.MinimumAngle); // 10 度 gp3.setMaximumAngle (Gp3PolyParam.MaximumAngle); // 120 度 gp3.setNormalConsistency (Gp3PolyParam.NormalConsistency);
<3>.计算整幅图像的ROPS特征:
查找PCL官网的tutoriales:http://pointclouds.org/documentation/tutorials/rops_feature.php。
#include <pcl/features/rops_estimation.h> #include <pcl/io/pcd_io.h> int main (int argc, char** argv) { if (argc != 4) return (-1); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ()); if (pcl::io::loadPCDFile (argv[1], *cloud) == -1) return (-1); pcl::PointIndicesPtr indices = boost::shared_ptr <pcl::PointIndices> (new pcl::PointIndices ()); std::ifstream indices_file; indices_file.open (argv[2], std::ifstream::in); for (std::string line; std::getline (indices_file, line);) { std::istringstream in (line); unsigned int index = 0; in >> index; indices->indices.push_back (index - 1); } indices_file.close (); std::vector <pcl::Vertices> triangles; std::ifstream triangles_file; triangles_file.open (argv[3], std::ifstream::in); for (std::string line; std::getline (triangles_file, line);) { pcl::Vertices triangle; std::istringstream in (line); unsigned int vertex = 0; in >> vertex; triangle.vertices.push_back (vertex - 1); in >> vertex; triangle.vertices.push_back (vertex - 1); in >> vertex; triangle.vertices.push_back (vertex - 1); triangles.push_back (triangle); } float support_radius = 0.0285f; unsigned int number_of_partition_bins = 5; unsigned int number_of_rotations = 3; pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method (new pcl::search::KdTree<pcl::PointXYZ>); search_method->setInputCloud (cloud); pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator; feature_estimator.setSearchMethod (search_method); feature_estimator.setSearchSurface (cloud); feature_estimator.setInputCloud (cloud); feature_estimator.setIndices (indices); feature_estimator.setTriangles (triangles); feature_estimator.setRadiusSearch (support_radius); feature_estimator.setNumberOfPartitionBins (number_of_partition_bins); feature_estimator.setNumberOfRotations (number_of_rotations); feature_estimator.setSupportRadius (support_radius); pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms (new pcl::PointCloud <pcl::Histogram <135> > ()); feature_estimator.compute (*histograms); return (0); }