zoukankan      html  css  js  c++  java
  • 纹理特征:灰度共生矩阵

    (1).CalTexture.m文件

    function T = CalTexture(Image)
    [M,N,O] = size(Image);%% 得到图像的宽,高和通道
    %--------------------------------------------------------------------------
    %1.原始图像灰度化
    %--------------------------------------------------------------------------
    if O==3
        Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3));
    else
        if O==1
            Gray =Image;
        end;
    end;
    % imshow(Gray);
    %--------------------------------------------------------------------------
    %2.Î灰度共生矩阵分块,减少计算量
    %--------------------------------------------------------------------------
    Layer =8;
    for i = 1:M
        for j = 1:N
            for n = 1:256/Layer
                if (n-1)*Layer <= Gray(i,j) && Gray(i,j)<=((n-1)*Layer +Layer-1)
                    Gray(i,j) = n-1;
                end
            end
        end
    end
    %--------------------------------------------------------------------------
    %3.计算四个方向的灰度矩阵0,45,90,135
    %--------------------------------------------------------------------------
    P = zeros(Layer,Layer,4);
    dis = 5;
    for m = 1:Layer
        for n = 1:Layer
            for i = 1:M
                for j = 1:N
                    if j<N-dis&&Gray(i,j)==m-1&&Gray(i,j+dis)==n-1
                        P(m,n,1) = P(m,n,1)+1;
                        %P(n,m,1) = P(m,n,1)+1;
                        P(n,m,1) = P(n,m,1)+1;
                    end
                    if i<M-dis&&j<N-dis&&Gray(i,j)==m-1&&Gray(i+dis,j+dis)==n-1
                        P(m,n,2) = P(m,n,2)+1;
                        P(n,m,2) = P(n,m,2)+1;
                    end
                    if i<M-dis&&Gray(i,j)==m-1&&Gray(i+dis,j)==n-1
                        P(m,n,3) = P(m,n,3)+1;
                        P(n,m,3) = P(n,m,3)+1;
                    end
                    if i<M-dis&&j>dis&&Gray(i,j)==m-1&&Gray(i+dis,j-dis)==n-1
                        P(m,n,4) = P(m,n,4)+1;
                        P(n,m,4) = P(n,m,4)+1;
                    end
                end
            end
            if m==n
                P(m,n,:) = P(m,n,:)*2;
            end
        end
    end
    
    %
    % for n=1:4
    %     imshow(p(n));
    % end
    
    %%---------------------------------------------------------
    % ¶灰度矩阵归一化
    %%---------------------------------------------------------
    for n = 1:4
       P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)));
    end
    %--------------------------------------------------------------------------
    %4.¶计算灰度矩阵的特征
    %--------------------------------------------------------------------------
    H = zeros(1,4);
    I = H;
    Ux = H;      Uy = H;
    deltaX= H;  deltaY = H;
    C =H;
    L =H;
    for n = 1:4
        E(n) = sum(sum(P(:,:,n).^2)); %%计算能量
        for i = 1:Layer
            for j = 1:Layer
                if P(i,j,n)~=0
                    H(n) = -P(i,j,n)*log(P(i,j,n))+H(n); %%计算熵
                end
                I(n) = (i-j)^2*P(i,j,n)+I(n);  %%计算中心矩
                L(n)  = P(i,j,n)/(1+(i-j).^2)+L(n);%计算惯性
                
                Ux(n) = i*P(i,j,n)+Ux(n); %计算X均值
                Uy(n) = j*P(i,j,n)+Uy(n); %计算Y均值
         
            end
        end
    end
    for n = 1:4
        for i = 1:Layer
            for j = 1:Layer
                deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n); %
                deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n); %
               % C(n) = i*j*P(i,j,n)+C(n);
               C(n) = (i-Ux(n))*(j-Uy(n))*P(i,j,n)+C(n);%计算相关性
            end
        end
        %C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %Ïà¹ØÐÔ
        C(n)= C(n)/deltaX(n)/deltaY(n);
    end
    
    %--------------------------------------------------------------------------
    T(1,1) = mean(E);   T(2,1) = sqrt(cov(E));
    T(1,2) = mean(H);   T(2,2) = sqrt(cov(H));
    T(1,3) = mean(I);   T(2,3) = sqrt(cov(I));
    T(1,4) = mean(C);   T(2,4) = sqrt(cov(C));
    
    

    //输出结果到数组,有四组结果

    for n =1:4;
        T(3,n)=C(n);
        T(4,n)=E(n);
        T(5,n)=H(n);
        T(6,n)=I(n);
        T(7,n)=L(n);
    end;
  • 相关阅读:
    Mybatis3.2和Spring3.x整合----Myb…
    Mybatis3.2和Spring3.x整合----Myb…
    支持向量分类方法
    KKT了解
    机器学习实战笔记 logistic回归
    朴素贝叶斯进行分类
    决策树算法实现
    KNN算法
    Spring AOP中增强知识
    Java动态代理知识
  • 原文地址:https://www.cnblogs.com/wishchin/p/9200430.html
Copyright © 2011-2022 走看看