自然语言处理研究使用计算机编程来处理与理解人类语言。应用场景机器翻译、情感分析、文本处理、聊天机器人。通用技术1.分词将连续文本分割成若干词汇2.停用词过滤拿一个句子来说:主谓宾、定状补。经过停用词过滤以后就只剩下---主谓宾。词干提取和词形还原主要应用在英文等西方语言中。3.词干提取是指对一个单词去掉后缀,还原为词本身。4.词形还原是指同一单词不同形式的识别,将单词还原为标准形式。5.词袋模型用来将文本转换成数值向量的表示形式。方式为将每个文档构建一个特征向量,其中包含每个单词在文档中出现的次数。6.TF-IDFTF-IDF=TF(词频)*IDF(逆文档频率)TF(Term Frequency):词频统计,对文章中词语出现的频率进行计数统计。 $TF=frac{当前文档中单词出现的次数}{当前文档中包含的单词总数}$ 大众词出现的次数多,也不应该认为是重要的,因为在其它文档中出现的次数也多。为了更好的衡量大众词的价值,可用IDF来解决。IDF(Inverse Document Frequency):逆文档频率,指的是语料库中文档总数与语料库中包含该词的文档数,二者比值的对数(log)。 $IDF=logleft ( frac{语料库中文档总数}{语料库中包含该词的文档数+1} ight )$ 举个例子: 昨夜 星辰 昨夜风 小马过河 昨夜房上看月亮 明天又是另外一天了 "昨夜"在第一个文档中出现了2次,第一个文档总共包含4个词,总共存在4个文档,故 $TF=frac{2}{4}$ , $IDF=logleft ( frac{4}{2+1} ight )$ "昨夜"的TF-IDF值为:$0.5 imes logleft ( 4/3 ight )$ 7.Word2VecWord2Vec:Word2Vec是Google在2013年提出的一个开源算法,使用神经网络技术,可以将词表转化为向量表示。确切的说,就是将词映射为n维空间向量,特征维度n视具体的情况与需求而定。计算文本相似度:可先将词条转化成向量,从而根据余弦相似度来计算文本之间的相似性。 |