zoukankan      html  css  js  c++  java
  • Redhat Memcache UDF安装配置

    一、软件包

    a) libmemcached-0.27.tar.gz

    b) memcached_functions_mysql-0.9.tar.gz

    二、安装步骤

    a) Tar zxvf libmemcached-0.27.tar.gz

    b) Cd libmemcached-0.27

    c) ./configure –prefix=/usr/local/libmemcached –with-memcached=/usr/bin/memcached

    d) Make

    e) Make install

    f) echo “/usr/local/libmemcached”>>/etc/ld.so.conf

    g) ldconfig

    h) tar zxvf memcached_functions_mysql-0.9.tar.gz

    i) cd memcached_functions_mysql-0.9

    j) ./configure –prefix=/usr/local/memcache_mysql –with-mysql=/usr/local/mysql/bin/mysql_config –with-libmemcached=/usr/local/libmemcached

    k) Make && make install

    l) Mkdir /usr/local/mysql/lib/mysql/plugin

    m) Cp /usr/local/memcache_mysql/lib/libmemcached_functions* /usr/local/mysql/lib/mysql/plugin

    n) Chown –R mysql:mysql /usr/local/mysql/lib/mysql/plugin

    o) /usr/local/mysql/bin/mysql –uroot –p123456 mysql

    p) Mysql>source /opt/memcached_functions_mysql-0.9/sql/install_functions.sql

    q) Mysql>select * from mysql.func

    三、测试

    a) Mysql>select memc_servers_set(‘127.0.0.1 11211’);

    b) Mysql>use test;

    c) Mysql>create table t_1(id int ,name varchar(20));

    d) Mysql>create trigger trigger_t_1add after insert on t_1 for each row set @tmp=memc_set(NEW.id,NEW.name);

    e) Mysql>create trigger trigger_t_1update after update on t_1 for each row set @tmp=memc_set(NEW.id,NEW.name);

    f) Mysql>Create trigger trigger_t_1del before delete on t_1 for each row set @tmp=memc_delete(OLD.id)

    g) Mysql>Insert into t_1 values(7,’555555’),(3,’33333333’) ,(8,’ 888888888’) ,(9,’ 99999999999’);

    h) Mysql>update t_1 set name=’update’ where id=1

    i) Mysql>delete from t_1 where id=1;

    j) Mysql>exit

    k) telnet 127.0.0.1 1121

    get 8

    VALUE 8 0 9

    888888888

    END

    get 9

    VALUE 9 0 11

    99999999999

    END

    get 7

    VALUE 7 0 6

    555555

    END

    四、注意事项

    a) Memcached服务端的安装在些无说明。可以查看我以前memcached安装文章。

  • 相关阅读:
    POJ 2018 二分
    873. Length of Longest Fibonacci Subsequence
    847. Shortest Path Visiting All Nodes
    838. Push Dominoes
    813. Largest Sum of Averages
    801. Minimum Swaps To Make Sequences Increasing
    790. Domino and Tromino Tiling
    764. Largest Plus Sign
    Weekly Contest 128
    746. Min Cost Climbing Stairs
  • 原文地址:https://www.cnblogs.com/witer666/p/2031705.html
Copyright © 2011-2022 走看看