zoukankan      html  css  js  c++  java
  • Codeforces 142C. Help Caretaker 题解

    原题链接:Codeforces 142C. Help Caretaker
    题目大意:给定一个\(n\cdot m\)的矩阵,每次可以摆一个T字(T的形状见原题面),这些T不能交叉重叠,问在一个\(n\cdot m\)的矩阵中最多可以摆多少个T字。
    题解:先来口胡一下本题我一共试过三种方法:
    (1)打表(连方案一起打下来,反正一共就\(9\times 9\)个,够了。
    (2)暴力dfs,一眼就能看出来解法的,再加上一点点剪枝,就没有了。
    (3)运用状态压缩,记录下最近三行的状态,用map记录一下,搜索就可以了。
    口胡完毕,大佬们可以离开了
    好了,我先来讲一下我的两种做法:
    (1)暴力dfs,加上一个玄学牺牲了正确性的剪枝,然后很惊奇地发现在\(9\times 8\)\(8\times 9\)的情况下会WA,便用暴力加了一个表。
    暴力的思路应该不用讲了,接下来就看一下代码吧。
    my code

    #include <cstdio>
    char mp[15][15];
    int n,m;
    int ans;
    char an[15][15];
    const int d[4][5][2]={{{0,0},{0,1},{0,2},{1,1},{2,1}},{{0,2},{1,0},{1,1},{1,2},{2,2}},{{0,1},{1,1},{2,0},{2,1},{2,2}},{{0,0},{1,0},{1,1},{1,2},{2,0}}};//增量表
    void dfs(int x,int y,int num,int use){
        if(y==m+1){
            x++;
            y=1;
        }
        if(((n*m-use))/5+num<=ans){
            return;
        }
        if(x>n){
            if(num>ans){
                ans=num;
                for(int i=1;i<=n;i++){
                    for(int j=1;j<=m;j++){
                        an[i][j]=mp[i][j];
                    }
                }
            }
            return;
        }
        if(mp[x][y]=='.'){
            use++;
        }
        dfs(x,y+1,num,use);
        bool could;
        int nx,ny;
        for(int i=0;i<4;i++){
            could=1;
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                if(nx<1||ny<1||nx>n||ny>m||mp[nx][ny]!='.'){
                    could=0;
                    break;
                }
            }
            if(!could){
                continue;
            }
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                mp[nx][ny]=(char)(num+'A');
            }
            dfs(x,y+1,num+1,use+5);
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                mp[nx][ny]='.';
            }
        }
    }
    int main(){
        scanf("%d%d",&n,&m);
        if(n==9&&m==8){
            printf("%d\n",12);
            puts(".AAABCCC");
            puts(".DA.B.C.");
            puts(".DABBBCE");
            puts("DDDFGEEE");
            puts("HFFFGGGE");
            puts("HHHFGIII");
            puts("HJKKKLI.");
            puts(".J.K.LI.");
            puts("JJJKLLL.");
            return 0;
        }
        if(n==8&&m==9){
            printf("%d\n",12);
            puts("...ABBB.C");
            puts("DAAAEBCCC");
            puts("DDDAEBF.C");
            puts("D.GEEEFFF");
            puts("GGGHHHF.I");
            puts("J.GKHLIII");
            puts("JJJKHLLLI");
            puts("J.KKKL...");
            return 0;
        }
        for(int x=1;x<=n;x++){
            for(int y=1;y<=m;y++){
                mp[x][y]='.';
                an[x][y]='.';
            }
        }
        ans=0;
        dfs(1,1,0,0);
        printf("%d\n",ans);
        for(int x=1;x<=n;x++){
            for(int y=1;y<=m;y++){
                putchar(an[x][y]);
            }
            puts("");
        }
        return 0;
    }
    

    (2)感觉有点悬那,正式考试时貌似很慌啊,还是老老实实打状压吧。
    思路:记忆化搜索,怎么记忆化呢?我们令\(f[x][y][mask]\)为当前在第\(x\) 行,第\(y\)列,前三行状态为\(mask\)时,后面最多能摆多少个T。
    话说,暴力的代码是正好写,但这个嘛……位运算的基础一定要好。
    my code

    #include <cstdio>
    #include <map>
    #include <algorithm>
    using namespace std;
    #define par pair<pair<int,int>,int>
    #define make_par(a,b,c) make_pair(make_pair(a,b),c)
    const int d[4][5][2]={{{-2,-2},{-2,-1},{-2,0},{-1,-1},{0,-1}},{{-2,0},{-1,-2},{-1,-1},{-1,0},{0,0}},{{-2,-1},{-1,-1},{0,-2},{0,-1},{0,0}},{{-2,-2},{-1,-2},{-1,-1},{-1,0},{0,-2}}};//同上
    map<par,int> mp;
    int n,m;
    int find(int x,int y,int nx,int ny){
        return 1<<((x-nx)*m+y-ny);
    }
    int mx(int a,int b){
        return a>b?a:b;
    }
    int dfs(int x,int y,int mask){
        if(mask&(1<<28)){
            mask^=(1<<28);
        }
        if(mask&(1<<29)){
            mask^=(1<<29);
        }
        if(mask&(1<<30)){
            mask^=(1<<30);
        }
        par now=make_par(x,y,mask);
        if(mp.count(now)>0){
            return mp[now];
        }
        int &ans=mp[now]=0;
        if(y>m){
            y=1;
            x++;
        }
        if(x>n){
            return ans=0;
        }
        ans=dfs(x,y+1,mask<<1);
        int nx,ny;
        int nmask;
        int _now;
        bool could;
        if(y<=2){
            return ans;
        }
        for(int i=0;i<4;i++){
            nmask=mask;
            nmask<<=1;
            could=1;
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                if(nx<1||ny<1||nx>n||ny>m){
                    could=0;
                    break;
                }
                _now=find(x,y,nx,ny);
                if(mask&(_now>>1)){
                    could=0;
                    break;
                }
                nmask|=_now;
            }
            if(could){
                ans=mx(ans,dfs(x,y+1,nmask)+1);
            }
        }
        return ans;
    }
    char s[15][15];
    bool found(int x,int y,int mask,int res){
        if(y>m){
            y=1;
            x++;
        }
        if(res==0){
            return 1;
        }
        if(x>n){
            return res==0;
        }
        if(dfs(x,y+1,mask<<1)>=res&&found(x,y+1,mask<<1,res)){
            return 1;
        }
        int nx,ny;
        int nmask;
        int _now;
        bool could;
        for(int i=0;i<4;i++){
            nmask=mask;
            nmask<<=1;
            could=1;
            for(int j=0;j<5;j++){
                nx=x+d[i][j][0];
                ny=y+d[i][j][1];
                if(nx<1||ny<1||nx>n||ny>m){
                    could=0;
                    break;
                }
                _now=find(x,y,nx,ny);
                if(mask&(_now>>1)){
                    could=0;
                    break;
                }
                nmask|=_now;
            }
            if(could){
                if(dfs(x,y+1,nmask)<res-1){
                    continue;
                }
                for(int j=0;j<5;j++){
                    nx=x+d[i][j][0];
                    ny=y+d[i][j][1];
                    s[nx][ny]=res+'A'-1;
                }
                if(found(x,y+1,nmask,res-1)){
                    return 1;
                }
                for(int j=0;j<5;j++){
                    nx=x+d[i][j][0];
                    ny=y+d[i][j][1];
                    s[nx][ny]='.';
                }
            }
        }
        return 0;
    }
    int main(){
        scanf("%d%d",&n,&m);
        if(n<3||m<3){
            puts("0");
            for(int i=1;i<=n;i++){
                for(int j=1;j<=m;j++){
                    putchar('.');
                }
                puts("");
            }
            return 0;
        }
        int ans=dfs(3,1,0);
        printf("%d\n",ans);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                s[i][j]='.';
            }
        }
        found(3,1,0,ans);
        for(int i=1;i<=n;i++){
            puts(s[i]+1);
        }
        puts("");
        return 0;
    }
    

    我的思路讲完了,接下来来看一下CF上各路神仙的解法吧,真的是……。
    我们先来看一下fhlasek的解法:
    他的代码很明显的一个暴力dfs+剪枝,但思路和我上面的dfs完全不一样。
    思路:对于一个地图,我们枚举在哪一个上面放上一个T,如果可以放,就放了,放下去之后,再往下走一格,试着放一放,放得下,就放,再跳出,放不下,就跳出。
    这个dfs的效率奇高,最慢的点只有128ms,(比我写的状压快多了)。
    但我弄不明白为什么他要在程序中打一个表呢?我试着把表删去,再交一遍,同样是AC,那么,目的就出来啦:是为了将200ms以上的点变为30ms。不过真有这么重要么
    下面是代码:

    /* Writen by Filip Hlasek 2011 */
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    #include <string>
    #include <algorithm>
    #include <cmath>
    
    #define FOR(i,a,b) for(int i=(a);i<=(b);i++)
    #define REP(i,b) for(int i=0;i<b;i++)
    
    using namespace std;
    
    char u[10][10],b[10][10];
    int N,M,best; 
    
    bool ok(int x,int y){
      return x>=0&&y>=0&&x<N&&y<M&&u[x][y]=='.';
    }
    
    int D[4][5][2]={{{0,0},{1,0},{2,0},{0,1},{0,-1}},
                    {{0,0},{-1,0},{-2,0},{0,1},{0,-1}},
                    {{0,0},{0,1},{0,2},{1,0},{-1,0}},
                    {{0,0},{0,-1},{0,-2},{1,0},{-1,0}}};
    
    void dfs(int depth){
      if(depth > best){
        best=depth;
        REP(i,N) REP(j,M+1) b[i][j]=u[i][j];
      }
      bool found = false;
      int cntfound = 0;
      REP(x,N){
        REP(y,M){
          if(found) cntfound++;
          if(cntfound > 2) return;
          REP(S,4){
            bool uok = true;
            REP(d,5) if(!ok(x+D[S][d][0],y+D[S][d][1])) uok=false;
            if(!uok) continue;
            found = true;
            REP(d,5) u[x+D[S][d][0]][y+D[S][d][1]]='A'+depth;
            dfs(depth+1);
            REP(d,5) u[x+D[S][d][0]][y+D[S][d][1]]='.';
          }
        }
      }
    }
    
    
    int main(int argc, char *argv[]){
      scanf("%d%d",&N,&M);
      if(N==9&&M==9){
        printf("13\nAAABBBCCC\n.AD.BE.C.\n.AD.BE.C.\nFDDDEEE.H\nFFFGGGHHH\nFIIIGJJJH\n.LIKG.JM.\n.LIKKKJM.\nLLLK..MMM\n");
        return 0;
      }
      if(N==9&&M==8){
        printf("12\nAAABBB.C\n.AD.BCCC\n.AD.B.EC\nFDDDEEE.\nFFFGGGEI\nFHHHGIII\n.KHJG.LI\n.KHJJJL.\nKKKJ.LLL\n");
        return 0;
      }
      REP(i,N) REP(j,M) u[i][j]='.';
      REP(i,N) u[i][M]='\0';
      REP(i,N) REP(j,M+1) b[i][j]=u[i][j];
      best=0;
      dfs(0);
      printf("%d\n",best);
      REP(i,N) printf("%s\n",b[i]);
      return 0;
    }
    

    接下来的解法是来自pavel的:
    思路:暴力dfs+剪枝,(1)如果剩下的格子个数除以5下取整加上当前的答案还没有当前更新的最终答案要大,就可以return了,(2)如果剩下的格子去掉2行2列之后剩下的格子数加上当前答案还没有当前的最终答案大,就可以return了。思路很好理解,代码也很好实现。
    下面是代码:

    #define mp make_pair
    #define pb push_back                     
    #define setval(a,v) memset(a,v,sizeof(a))
    
    #if ( _WIN32 || __WIN32__ )
        #define LLD "%I64d"
    #else
        #define LLD "%lld"
    #endif
    
    using namespace std;
    
    typedef long long ll;
    typedef long double ld;
    
    char s[10][10];
    char bs[10][10];
    
    int ans;
    
    int start = clock();
    
    const int dx[4][5] = {{0,1,2,1,1},{0,1,2,2,2},{1,1,0,1,2},{0,0,1,2,0}};
    const int dy[4][5] = {{0,0,0,1,2},{1,1,0,1,2},{0,1,2,2,2},{0,1,1,1,2}};
    int n,m;
    
    bool q,q1;
    
    void dfs(int x,int y,int cur){
        if (cur == ans){
          memcpy(bs,s,sizeof(bs));
          q = q1 = true;
          return;
        }
        if (x >= n-2){
            if (clock() - start > 2.7*CLOCKS_PER_SEC)
               q = true, q1 = false; 
            return;
        }
        if (y >= m-2){
            dfs(x+1,0,cur);
            return;
        }
        if (((m-y+1)+(n-x)*m)/5 + cur <= ans)
            return;
        if ((m-y-1)+(n-x-2)*m+cur <= ans)
            return;
        for (int i = 0; i < 4; i++){
            bool ok = !q;
            for (int j = 0; j < 5; j++)
                ok &= s[x+dx[i][j]][y+dy[i][j]] == 0;
            if (ok){
                for (int j = 0; j < 5; j++)
                    s[x+dx[i][j]][y+dy[i][j]] = 'A'+cur;
                dfs(x,y+1,cur+1);
                for (int j = 0; j < 5; j++)
                    s[x+dx[i][j]][y+dy[i][j]] = 0;
            }
        }
        if (!q)
            dfs(x,y+1,cur);
    }
    
    
    int main()
    {
      #ifdef LOCAL
        freopen("input.txt","r",stdin);
        freopen("output.txt","w",stdout);
      #endif
    
      scanf("%d %d",&n,&m);
      if (n > 2 && m > 2){
          for (ans = 0; ; ans++){
            cerr << ans << endl;
            q = q1= false;
            dfs(0,0,0);
            if (!q1){
                ans--;
                break;
            }
          }
      }
      printf("%d\n",ans);
      for (int i = 0; i < n; i++,printf("\n"))
        for (int j = 0; j < m; j++)
            if (bs[i][j] == 0)
                printf(".");
            else
                printf("%c",bs[i][j]); 
      return 0;
    }
    

    接下来看Fefer_Ivan巨佬的:
    思路:这一位和上面pavel巨佬的解法思路差不多,并且他的代码还没有第(2)个剪枝,但是他十分有个性地用了一个状态压缩,把一整张地图的每一列压成了一个int,让后就很华丽丽地将dfs中的时间复杂度从\(O(9\cdot 4)\)优化到了\(O(4)\),但是思维复杂度就迅速地往上涨。
    下面是代码:

    #include <algorithm>
    #include <functional>
    #include <numeric>
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstdlib>
    #include <ctime>
    #include <cstring>
    #include <cassert>
    #include <vector>
    #include <list>
    #include <map>
    #include <set>
    #include <deque>
    #include <queue>
    #include <bitset>
    #include <sstream>
    
    using namespace std;
    
    #define forn(i, n) for(int i = 0; i < int(n); ++i)
    #define for1(i, n) for(int i = 1; i <= int(n); ++i)
    #define ford(i, n) for(int i = int(n) - 1; i >= 0; --i)
    #define fore(i, l, r) for(int i = int(l); i < int(r); ++i)
    #define sz(v) int((v).size())
    #define all(v) (v).begin(), (v).end()
    #define pb push_back
    #define X first
    #define Y second
    
    typedef long long li;
    typedef long double ld;
    typedef pair<int, int> pt;
    
    template<typename T> T abs(T a) { return a < 0 ? -a : a; }
    template<typename T> T sqr(T a) { return a*a; }
    
    const int INF = (int)1e9;
    const ld EPS = 1e-9;
    const ld PI = 3.1415926535897932384626433832795;
    
    //const int ch[] = {3, 3, };
    
    int n, m;
    int used[20];
    
    int t[20][20];
    
    int cur;
    int ans;
    int ax[20], ay[20], ar[20];
    int cx[20], cy[20], cr[20];
    
    char f[20][20];
    
    inline bool check(int x, int y, int* a){
        return ((used[x] >> y) & a[0]) == 0 &&
               ((used[x + 1] >> y) & a[1]) == 0 &&
               ((used[x + 2] >> y) & a[2]) == 0;
    }
    
    const int MAGIC = 80000000;
    int curIter;
    
    void solve(int x, int y){
        if(x + 3 > n){
            if(ans < cur){
                ans = cur;
                memcpy(ax, cx, sizeof(int)*ans);
                memcpy(ay, cy, sizeof(int)*ans);
                memcpy(ar, cr, sizeof(int)*ans);  
            }
            return;
        }
    
        if(y + 3 > m)
            return solve(x + 1, 0);
    
        if(5*(ans - cur + 1) > (n - x - 1)*m + m - y)
            return;
    
        if(curIter > MAGIC)
            return;
        curIter++;
    
        forn(i, 4)
            if(check(x, y, t[i])){
                for(int j = x; j < x + 3; ++j)
                    used[j] |= (t[i][j - x] << y);
                cx[cur] = x;
                cy[cur] = y;
                cr[cur] = i;
                cur++;
    
                solve(x, y + 1);
    
                cur--;
                for(int j = x; j < x + 3; ++j)
                    used[j] ^= (t[i][j - x] << y);
            }
    
        solve(x, y + 1);
    }
    
    int main(){
        #ifndef ONLINE_JUDGE
            freopen("input.txt", "rt", stdin);
            //freopen("output.txt", "wt", stdout);
        #endif
        
        t[0][0] = 7;
        t[0][1] = 2;
        t[0][2] = 2;
    
        t[1][0] = 4;
        t[1][1] = 7;
        t[1][2] = 4;
    
        t[2][0] = 2;
        t[2][1] = 2;
        t[2][2] = 7;
    
        t[3][0] = 1;
        t[3][1] = 7;
        t[3][2] = 1;
    
        cin >> n >> m;
    
        solve(0, 0);
    
        cout << ans << endl;
    
        char c = 'A';
    
        forn(i, n)
        forn(j, m)
            f[i][j] = '.';
    
        forn(i, ans){
            int x = ax[i];
            int y = ay[i];
            int r = ar[i];
    
            forn(j, 3)
            forn(k, 3)
                if((t[r][j] >> k) & 1)
                    f[x + j][y + k] = c;
    
            ++c;
        }
    
        forn(i, n)
            printf("%s\n", f[i]);
    
        cerr << clock() << endl;
    
        return 0;
    }
    

    接下来这一段是ir5的思路+代码:
    思路:说真心话,我在翻到他的代码的时候,第一反应是:这是这一题的代码么!
    好吧,这一个思路嘛,最重要的就是信仰,代码分为两个步骤完成,第一个步骤是计算出最小值,第二个步骤是计算出方案。我先透露一下啊,这一个代码的正确性是很难保证的,没准你哪次rp极低,交上去就WA了呢。
    预处理一下,如果我在当前的地方放了一个某种形状的T,那有多少个地方不能某种形状的T,把全部存起来。
    然后,随机的摆一些不重复的T,直到不能摆为止。
    是不是很玄学啊,如果有点懵逼的话先看一下代码把。
    然后进行计算方案,暴力,加上根据预处理以及答案得出的最优性及可行性剪枝,就可以了。
    看代码吧:(能想出这种解法的真是神仙

    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    // #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <algorithm>
    #include <sstream>
    #include <iostream>
    #include <cassert>
    using namespace std;
    typedef long long ll;
    
    #define REP(i,n) for (int i=0; i<(int)(n); ++i)
    #define FOR(i,k,n) for (int i=(k); i<(int)(n); ++i)
    #define FOREQ(i,k,n) for (int i=(k); i<=(int)(n); ++i)
    #define FORIT(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();++i)
    #define SZ(v) (int)((v).size())
    #define MEMSET(v,h) memset((v),(h),sizeof(v))
    
    const int dip[4][5][2] = {
        {
            {0, 0},
            {0, 1},
            {0, 2},
            {1, 1},
            {2, 1},
        },
        {
            {0, 2},
            {1, 0},
            {1, 1},
            {1, 2},
            {2, 2},
        },
        {
            {0, 1},
            {1, 1},
            {2, 0},
            {2, 1},
            {2, 2},
        },
        {
            {0, 0},
            {1, 0},
            {1, 1},
            {1, 2},
            {2, 0},
        },
    };
    
    typedef vector<int> V;
    
    int N, M;
    int code(int y, int x, int r) {
        return 4*(y*(M-2)+x)+r;
    }
    
    int K;
    vector<V> vg;
    int res;
    bool f[300], h[300], g[300];
    void solve(int idx, int cur) {
        int rest=0;
        FOR(i, idx, K) if (!f[i]) rest++;
        if (rest+idx <= res) return;
        if (idx==K) {
            res = cur;
            memcpy(g, h, sizeof(h));
            return;
        }
    
        // do not put
        solve(idx+1, cur);
    
        // put
        if (!f[idx]) {
            bool tmp[300];
            memcpy(tmp, f, sizeof(f));
            FORIT(ito, vg[idx]) {
                f[*ito] = true;
            }
            h[idx] = true;
    
            solve(idx+1, cur+1);
            // revert
            memcpy(f, tmp, sizeof(f));
            h[idx] = false;
        }
    }
    
    void find_maximal() {
        int cur=0;
        REP(i, 300) {
            int idx = rand()%K;
            if (!f[idx]) {
                FORIT(ito, vg[idx]) {
                    f[*ito] = true;
                }
                f[idx] = true;
                h[idx] = true;
                cur++;
            }
        }
        if (cur > res) {
            res = cur;
            memcpy(g, h, sizeof(g));
        }
    }
    
    int main() {
        // memoize 2 lines
        while (cin >> N >> M) {
            if (N<=2 || M<=2) {
                // no solution
                puts("0");
                REP(i, N) {
                    REP(j, M) printf(".");
                    puts("");
                }
                continue;
            }
    
            if (N==8 && M==9) {
                cout<<12<<endl;
                cout<<"AAA.BBB.C\n.ADDDBCCC\nEA.DFB.GC\nEEEDFFFG.\nEHHHFIGGG\n.JH.KIIIL\n.JH.KILLL\nJJJKKK..L\n";
                continue;
            }
            if (N==9 && M==9) {
                cout<<13<<endl;
                cout<<"A.BBBCDDD\nAAAB.C.D.\nAE.BCCCDF\n.EEEGHFFF\n.EGGGHHHF\nIII.GHJJJ\n.IKLLLMJ.\n.IK.L.MJ.\n.KKKLMMM.\n";
                continue;
            }
            if (N==9 && M==8) {
                cout<<12<<endl;
                cout<<"AAA.BCCC\n.ABBBDC.\n.A.EBDC.\nFEEEDDDG\nFFFEHGGG\nFIIIHHHG\n.JIKHLLL\n.JIKKKL.\nJJJK..L.\n";
                continue;
            }
    
    
            K=4*(N-2)*(M-2);
            vg = vector<V>(K);
            REP(y1, N-2) REP(x1, M-2) REP(r1, 4) {
                REP(y2, N-2) REP(x2, M-2) REP(r2, 4) {
                    bool col = false;
                    REP(u1, 5) REP(u2, 5) {
                        int ay1=y1+dip[r1][u1][0];
                        int ax1=x1+dip[r1][u1][1];
    
                        int ay2=y2+dip[r2][u2][0];
                        int ax2=x2+dip[r2][u2][1];
    
                        if (ay1==ay2 && ax1==ax2) {
                            col = true;
                        }
                    }
                    if (col) {
                        vg[code(y1, x1, r1)].push_back(code(y2, x2, r2));
                    }
                }
            }
            REP(y, N-2) REP(x, M-2) REP(r1, 4) REP(r2, 4) if (r1 != r2) {
                vg[code(y, x, r1)].push_back(code(y, x, r2));
            }
    
            // solve(0, 0);
            res=0;
            MEMSET(g, false);
            REP(itr, 50000) {
                MEMSET(f, false);
                MEMSET(h, false);
                find_maximal();
            }
    
            printf("%d\n", res);
            // print
            vector<string> res(N, string(M, '.'));
    
            int z=0;
            REP(i, K) if (g[i]) {
                int x=i/4%(M-2), y=i/4/(M-2), r=i%4;
                REP(u, 5) {
                    res[y+dip[r][u][0]][x+dip[r][u][1]] = 'A'+z;
                }
                z++;
            }
            /*
            REP(i, N) cout<<res[i]<<"\\n";
            cout<<endl;
            */
            REP(i, N) cout<<res[i]<<endl;
        }
    }
    

    接下来看一下black_horse2014的思路及代码:
    思路:状态压缩动态规划,令\(f[i][mask]\)表示:到了第\(i\)行时,上面两行的状态为\(mask\)时的最多方案数。
    那么状态转移方程时很显然的,我们在开一个数组记录一下当前行的选择,就可以很容易地转换出最终的方案。
    虽然说口胡很简单,但是代码实现还是非常难的,需要对位运算以及状态压缩DP有很深刻的掌握。
    下面是代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long LL;
    typedef pair<int, int> PII;
    typedef pair<LL, LL> PLL;
    typedef pair<int, LL> PIL;
    typedef pair<LL, int> PLI;
    typedef vector<int> VI;
    typedef vector<PII> VPII;
    typedef double DB;
    
    #define pb push_back
    #define mset(a, b) memset(a, b, sizeof a)
    #define all(x) (x).begin(), (x).end()
    #define bit(x) (1 << (x))
    #define bitl(x) (1LL << (x))
    #define sqr(x) ((x) * (x))
    #define sz(x) ((int)(x.size()))
    #define cnti(x) (__builtin_popcount(x))
    #define cntl(x) (__builtin_popcountll(x))
    #define clzi(x) (__builtin_clz(x))
    #define clzl(x) (__builtin_clzll(x))
    #define ctzi(x) (__builtin_ctz(x))
    #define ctzl(x) (__builtin_ctzll(x))
    
    #define X first
    #define Y second
    
    #define Error(x) cout << #x << " = " << x << endl
    
    template <typename T, typename U>
    inline void chkmax(T& x, U y) {
    	if (x < y) x = y;
    }
    
    template <typename T, typename U>
    inline void chkmin(T& x, U y) {
    	if (y < x) x = y;
    }
    
    int n, m;
    
    int dp[10][bit(18)];
    int f[10][bit(18)];
    int g[10][bit(18)];
    
    const int dx[][5] = {{0, 0, 0, 1, 2}, {0, 1, 1, 1, 2}, {0, 1, 2, 2, 2}, {0, 1, 1, 1, 2}};
    const int dy[][5] = {{0, 1, 2, 1, 1}, {2, 0, 1, 2, 2}, {1, 1, 0, 1, 2}, {0, 0, 1, 2, 0}};
    
    bool out(int x, int y) {
    	return x > n || y >= m || y < 0;
    }
    
    int S;
    char s[10][10];
    
    void go(int r, int state, int nstate, int pos, long long add, int cnt) {
    	if (pos == m) {
    		if(dp[r][nstate] < cnt) {
    			dp[r][nstate] = cnt;
    			f[r][nstate] = add;
    			g[r][nstate] = S;
    		}
    		return;
    	}
    	go(r, state, nstate, pos + 1, add, cnt);
    	int x = r, y = pos;
    	for (int i = 0; i < 4; i++) {
    		bool flg = 1;
    		for (int j = 0; flg && j < 5; j++) {
    			int nx = x + dx[i][j], ny = y + dy[i][j];
    			if (out(nx, ny)) {
    				flg = 0;
    				break;
    			}
    			if (nx <= r + 1) {
    				if (state >> ((nx - r) * m + ny) & 1) {
    					flg = 0;
    					break;
    				}
    			} else {
    				if (nstate >> (m + ny) & 1) {
    					flg = 0;
    					break;
    				}
    			}
    		}
    		if (!flg) continue;
    		int cstate = state, cnstate = nstate, cadd = add | bitl(pos*4+i);
    		for (int j = 0; flg && j < 5; j++) {
    			int nx = x + dx[i][j], ny = y + dy[i][j];
    			if (nx <= r + 1) {
    				cstate |= bit((nx-r)*m+ny);
    				if (nx == r + 1) {
    					cnstate |= bit(ny);
    				}
    			} else {
    				cnstate |= bit(ny + m);
    			}
    		}
    		go(r, cstate, cnstate, pos + 1, cadd, cnt + 1);
    	}
    }
    
    int main() {
    	
    	scanf("%d%d", &n, &m);
    	if (n <= 2 || m <= 2) {
    		puts("0");
    		for (int i = 0; i < n; i++) {
    			for (int j = 0; j < m; j++) putchar('.');
    			puts("");
    		}
    		return 0;
    	}
    	memset(dp, -1, sizeof dp);
    	dp[0][0] = 0;
    	for (int i = 1; i <= n-2; i++) {
    		for (int j = 0; j < bit(2*m); j++) if (~dp[i-1][j]) {
    			S = j;
    			go(i, j, j >> m, 0, 0, dp[i-1][j]);
    		}
    	}
    	int ans = 0, opt = 0;
    	for (int j = 0; j < bit(2*m); j++) {
    		if (dp[n-2][j] > ans) {
    			ans = dp[n-2][j];
    			opt = j;
    		}
    	}
    	for (int i = 1; i <= n; i++) {
    		for (int j = 0; j < m; j++) s[i][j] = '.';
    		s[i][m] = 0;
    	}
    	int r = n-2;
    	int tot = ans;
    	cout << ans << endl;
    	while (r > 0) {
    		long long st = f[r][opt];
    		for (int i = m-1; i >= 0; i--) {
    			for (int j = 0; j < 4; j++) {
    				if (st >> (4*i+j) & 1) {
    					int x = r, y = i;
    					for (int k = 0; k < 5; k++) {
    						int nx = x + dx[j][k], ny = y + dy[j][k];
    						s[nx][ny] = 'A' + tot - 1;
    					}
    					tot--;
    				}
    			}
    		}
    		opt = g[r][opt], r--;
    	}
    	for (int i = 1; i <= n; i++) {
    		puts(s[i]);
    	}
    	return 0;
    }
    

    接下来是coder的:
    思路:对于一些打表我已经无力去吐槽了他的代码,我们可以直接砍掉\(\frac{2}{3}\)。思路十分简单,暴力dfs,并且将最后剩下的一点直接打表处理最优,然后利用这一个剪枝,所以,就直接看代码啦(只需要看go和main函数的)。

    #include <cstdio>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <cmath>
    #include <map>
    #include <cstring>
    typedef long long ll;
    const int inf = 1000000009;
    const double pi = acos(-1.0);
    using namespace std;
    
    int i, j, k, m, n, cnt, e = -1;
    
    char ans[10][10], cur[10][10];
    
    signed char d[10][10][1<<9][1<<9];
    
    
    string z = "AAA.BCCC..ABBB.CD..AE.BFCD.EEEFFFDDDG.E.HFIIIGGGJHHHI.GK.JHL.IM.KJJJLMMMKKK.LLL.M";
    
    inline void setit(int a, int b, int k, int& x, int& y) {
        if (b & (1<<k)) {
            x = a | (1<<k);
            y = b ^ (1<<k);
        } else {
            if (a & (1<<k)) {
                x = a ^ (1<<k);
            } else x = a;
            y = b;
        }
    }
    
    signed char solve(int x, int y, int m1, int m2) {
        if (y >= n) return solve(x+1, 0, m1, m2);
        if (x >= m) {
            return 0;
        }
        signed char& ret = d[x][y][m1][m2];
        if (ret != -1) return ret;
        ret = 0;
    
        // skip
        int t1, t2;
        setit(m1, m2, y, t1, t2);
        ret = solve(x, y+1, t1, t2);
    
        if (y + 3 <= n) {
            if ( (m1 & (1<<y)) || (m1 & (1<<(y+1))) || (m1 & (1<<(y+2))) || (m2 & (1<<(y+1))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
    
                t2 |= (1<<(y+1));
                t1 |= (1<<(y+1));
                t1 |= (1<<(y+2));
    
                if (solve(x, y+2, t1, t2) + 1 > ret) ret = solve(x, y+2, t1, t2) + 1;
            }
    
            if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y+2))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y+2));
                t1 |= (1<<(y+1));
                t1 |= (1<<(y));
                t1 |= (1<<(y+2));
    
                if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
            }
    
            if ((m1 & (1<<(y+1))) || (m2 & (1<<(y+1))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y+1));
                t2 |= (1<<(y));
                t2 |= (1<<(y+2));
                t1 |= (1<<(y+1));
    
                if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
            }
    
            if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y));
                t1 |= (1<<(y+1));
                t1 |= (1<<(y));
                t1 |= (1<<(y+2));
    
                if (solve(x, y+3, t1, t2) + 1 > ret) ret = solve(x, y+3, t1, t2) + 1;
            }
        }
    
        return ret;
    }
    
    void rec(int x, int y, int m1, int m2, int ret) {
        if (y >= n) {
            rec(x+1, 0, m1, m2, ret);
            return;
        }
        if (x >= m) {
            return;
        }
    
        // skip
        int t1, t2;
        setit(m1, m2, y, t1, t2);
        if (ret  == solve(x, y+1, t1, t2)) {
            rec(x, y+1, t1, t2, ret);
            return;
        }
    
        if (y + 3 <= n) {
            if ( (m1 & (1<<y)) || (m1 & (1<<(y+1))) || (m1 & (1<<(y+2))) || (m2 & (1<<(y+1))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y+1));
                t1 |= (1<<(y+1));
    
                if (solve(x, y+3, t1, t2) + 1 == ret) {
                    rec(x, y+3, t1, t2, ret-1);
                    ans[x-2][y]=ans[x-2][y+1]=ans[x-2][y+2] = ans[x-1][y+1] = ans[x][y+1] = ret + 'A' - 1;
                    return;
                }
            }
    
            if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y+2))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y+2));
                t1 |= (1<<(y+1));
                t1 |= (1<<(y));
                t1 |= (1<<(y+2));
    
                if (solve(x, y+3, t1, t2) + 1 == ret) {
                    rec(x, y+3, t1, t2, ret-1);
                    ans[x-2][y+2]=ans[x-1][y]=ans[x-1][y+1] = ans[x-1][y+2] = ans[x][y+2] = ret + 'A' - 1;
                    return;
                }
    
            }
    
            if ((m1 & (1<<(y+1))) || (m2 & (1<<(y+1))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y+1));
                t2 |= (1<<(y));
                t2 |= (1<<(y+2));
                t1 |= (1<<(y+1));
    
                if (solve(x, y+3, t1, t2) + 1 == ret) {
                    rec(x, y+3, t1, t2, ret-1);
                    ans[x-2][y+1]=ans[x-1][y+1]=ans[x][y] = ans[x][y+1] = ans[x][y+2] = ret + 'A' - 1;
                    return;
                }
    
            }
    
            if ( (m2 & (1<<y)) || (m2 & (1<<(y+1))) || (m2 & (1<<(y+2))) || (m1 & (1<<(y))));
            else {
                setit(m1, m2, y, t1, t2);
                setit(t1, t2, y+1, t1, t2);
                setit(t1, t2, y+2, t1, t2);
    
                t2 |= (1<<(y));
                t1 |= (1<<(y+1));
                t1 |= (1<<(y));
                t1 |= (1<<(y+2));
    
                if (solve(x, y+3, t1, t2) + 1 == ret) {
                    rec(x, y+3, t1, t2, ret-1);
                    ans[x-2][y]=ans[x-1][y]=ans[x-1][y+1] = ans[x-1][y+2] = ans[x][y] = ret + 'A' - 1;
                    return;
                }
    
            }
        }
    
        throw 9;
    }
    
    const string H[3]={"###..#.#.#..",".#.###.#.###",".#...#####.."};
    int best = 0;
    
    void go(int x, int y, int c) {
    
    
        if (c > best) {
            best = c;
            for (i = 0; i < m; i++)
                for (j = 0; j < n; j++)
                    ans[i][j] = cur[i][j];
        }
        if (x + 3 > m) {
            return;
        }
        if (y + 3 > n) {
            go(x+1, 0, c);
            return;
        }
    
        for (int k = 0; k < 4; k++) {
            int f = 0;
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    if (H[i][k*3+j] == '#' && cur[x+i][y+j] != 0) f = 1;
            if (f) continue;
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    if (H[i][k*3+j] == '#') cur[x+i][y+j] = c + 'A';
            go(x, y+1, c+1);
            for (int i = 0; i < 3; i++)
                for (int j = 0; j < 3; j++)
                    if (H[i][k*3+j] == '#') cur[x+i][y+j] = 0;
        }
    
        if (y == 0 && m - x <= 6) {
            int t= 0;
            if (m - x == 6) t = 8;
            else if (m -x == 5) t = 7;
            else if (m-x == 4) t = 5;
            else if (m-x == 3) t = 4;
            if (t + c <= best) return;
        }
    
    
        go(x, y+1, c);
    }
    
    
    int main()
    {
    
        cin >> m >> n;
    
        if (m == 9 && n == 9) {
            cout << 13 << endl;
            for (i = 0; i < 9; i++) {
                for (j = 0; j < 9; j++) {
                    cout << z[9*i+j];
                }
                cout << endl;
            }
            return 0;
        }
    
    
    /*    if (m >= 3 && n >= 3) {
            memset(d, -1, sizeof(d));
            cnt = solve(2, 0, 0, 0);
            cout << cnt << endl;
            rec(2, 0, 0, 0, cnt);
        } else {
            cout << 0 << endl;
        }*/
    
        go(0, 0, 0);
        cout << best << endl;
        for (i = 0; i < m; i++)
            for (j = 0; j < n; j++)
                if (ans[i][j] == 0) ans[i][j] = '.';
    
        for (i = 0; i < m; i++)
            puts(ans[i]);
    
        return 0;
    }
    

    最后一个Kostroma的,真的是,悲惨。
    思路:暴力dfs+一个用途不大的剪枝,然后就T飞了。
    他的代码是暴力处理出了所有的T情况,这个代码量就……
    先看一下最原始的代码:

    TLE on test 76
    
    //#pragma comment(linker, "/STACK:64000000")
    #pragma hdrstop
    #define _CRT_SECURE_NO_WARNINGS
    #include <stdio.h>
    #include <iostream>
    #include <string>
    #include <vector>
    #include <algorithm>
    #include <math.h>
    #include <vector>
    #include <set>
    using namespace std;
    /*
    BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?
    
    REAL SOLUTION AFTER MAIN FUNCTION
    */
    #define mp make_pair
    #define pb push_back
    typedef long long li;
    typedef long double ld;
    typedef pair <int, int> pi;
    void solve();
    
    int main ()
    {
           
    #ifdef _DEBUG
        freopen ("in.txt", "r", stdin);
    #endif
        int t=1;
    
            //cout<<t<<endl;
    
        while (t--)
                    solve();
        return 0;
    }
    
    //#define int li
    
    int n, m;
    char a[10][10];
    char answer[10][10];
    vector < pi > need;
    int ans=0;
    bool modify1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    
    bool modify2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    void rec ( char c, int x, int y, int done=0 )
    {
    	bool all=true;
    	for (int i=x; i<n && i<x+3; i++)
    		for ( int j=((i==x)?y:0); j<m; j++ )
    		{
    			if ( ans*5+done>n*m+4 )
    				return;
    			if (a[i][j]==1)
    				done++;
    			else 
    				continue;
    			if (modify1 (c, i, j))
    			{
    				all=false;
    				rec(c+1, i, j+1, done-1);
    				undo1 (c, i, j);
    			}
    			if (modify2 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo2 (c, i, j);
    			}
    			if (modify3 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo3 (c, i, j);
    			}
    			if (modify4 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo4 (c, i, j);
    			}
    		}
    	if (all)
    	{
    		if (c-'A'>ans)
    		{
    			ans=c-'A';
    			for (int i=0; i<n; i++)
    				for (int j=0; j<m; j++)
    					answer[i][j]=a[i][j];
    		}
    	}
    }
    
    void solve ()
    {
         cin>>n>>m;
    	 for (int i=0; i<n; i++)
    		 for (int j=0; j<m; j++)
    			 a[i][j]=answer[i][j]=1;
    	 
    	 rec ('A', 0, 0);
    	 cout<<ans<<endl;
    	 for (int i=0; i<n; i++)
    	 {
    		 for (int j=0; j<m; j++)
    			 if (answer[i][j]==1)
    				 cout<<".";
    			 else
    				 cout<<answer[i][j];
    		 cout<<endl;
    	 }
    } 
    

    十分好理解。
    为了避免再次T掉,Kostroma加上了一些表,然后没有用地跑到了第79个点。

    TLE on test 79
    
    //#pragma comment(linker, "/STACK:64000000")
    #pragma hdrstop
    #define _CRT_SECURE_NO_WARNINGS
    #include <stdio.h>
    #include <iostream>
    #include <string>
    #include <vector>
    #include <algorithm>
    #include <math.h>
    #include <vector>
    #include <set>
    using namespace std;
    /*
    BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?
    
    REAL SOLUTION AFTER MAIN FUNCTION
    */
    #define mp make_pair
    #define pb push_back
    typedef long long li;
    typedef long double ld;
    typedef pair <int, int> pi;
    void solve();
    
    int main ()
    {
           
    #ifdef _DEBUG
        freopen ("in.txt", "r", stdin);
    #endif
        int t=1;
    
            //cout<<t<<endl;
    
        while (t--)
                    solve();
        return 0;
    }
    
    //#define int li
    
    int n, m;
    char a[10][10];
    char answer[10][10];
    vector < pi > need;
    int ans=0;
    bool modify1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    
    bool modify2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    void rec ( char c, int x, int y, int done=0 )
    {
    	bool all=true;
    	for (int i=x; i<n && i<x+3; i++)
    		for ( int j=((i==x)?y:0); j<m; j++ )
    		{
    			if ( ans*5+done>n*m+3 || done>16)
    				return;
    			if (a[i][j]==1)
    				done++;
    			else 
    				continue;
    			if (modify1 (c, i, j))
    			{
    				all=false;
    				rec(c+1, i, j+1, done-1);
    				undo1 (c, i, j);
    			}
    			if (modify2 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo2 (c, i, j);
    			}
    			if (modify3 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo3 (c, i, j);
    			}
    			if (modify4 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo4 (c, i, j);
    			}
    		}
    	if (all)
    	{
    		if (c-'A'>ans)
    		{
    			ans=c-'A';
    			for (int i=0; i<n; i++)
    				for (int j=0; j<m; j++)
    					answer[i][j]=a[i][j];
    		}
    	}
    }
    
    void solve ()
    {
         cin>>n>>m;
    	 for (int i=0; i<n; i++)
    		 for (int j=0; j<m; j++)
    			 a[i][j]=answer[i][j]=1;
    	if (n==7 && m==9)
    	{
    		cout<<"10\nAAAB..CCC\n.ADBBB.C.\n.ADBEEECF\nGDDD.EFFF\nGGGHIE.JF\nGHHHIIIJ.\n...HI.JJJ";
    		return;
    	}
    	if (n==9 && m==7)
    	{
    		cout<<"10\nAAABBB.\n.A..BC.\nDA.EBC.\nDDDECCC\nDFEEE.G\n.FFFGGG\nHFIIIJG\nHHHI.J.\nH..IJJJ";
    		return;
    	}
    	if (n==8 && m==8)
    	{
    		cout<<"10\nAAABBBC.\n.A..B.C.\nDA..BCCC\nDDDEEE.F\nDGGGEFFF\n.HGIE.JF\n.HGIIIJ.\nHHHI.JJJ";
    		return;
    	}
    	 rec ('A', 0, 0);
    	 cout<<ans<<endl;
    	 for (int i=0; i<n; i++)
    	 {
    		 for (int j=0; j<m; j++)
    			 if (answer[i][j]==1)
    				 cout<<".";
    			 else
    				 cout<<answer[i][j];
    		 cout<<endl;
    	 }
    } 
    

    最后,他又加上了两个表,然后很华丽地T81。

    TLE on test 81
    
    //#pragma comment(linker, "/STACK:64000000")
    #pragma hdrstop
    #define _CRT_SECURE_NO_WARNINGS
    #include <stdio.h>
    #include <iostream>
    #include <string>
    #include <vector>
    #include <algorithm>
    #include <math.h>
    #include <vector>
    #include <set>
    using namespace std;
    /*
    BE CAREFUL: ISN'T INT EQUAL TO LONG LONG?
    
    REAL SOLUTION AFTER MAIN FUNCTION
    */
    #define mp make_pair
    #define pb push_back
    typedef long long li;
    typedef long double ld;
    typedef pair <int, int> pi;
    void solve();
    
    int main ()
    {
           
    #ifdef _DEBUG
        freopen ("in.txt", "r", stdin);
    #endif
        int t=1;
    
            //cout<<t<<endl;
    
        while (t--)
                    solve();
        return 0;
    }
    
    //#define int li
    
    int n, m;
    char a[10][10];
    char answer[10][10];
    vector < pi > need;
    int ans=0;
    bool modify1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo1 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x, y+1));
    	need.pb (mp(x, y+2));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    
    bool modify2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo2 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y+1));
    	need.pb (mp(x+1, y+2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo3 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+1, y-1));
    	need.pb (mp(x+1, y-2));
    	need.pb (mp(x+2, y));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    bool modify4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		if ( need[i].first<0 || need[i].first>=n || need[i].second<0 || need[i].second>=m || a[need[i].first][need[i].second]!=1 )
    			return false;
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=c;
    	return true;
    }
    void undo4 (char c, int x, int y)
    {
    	need.resize(0);
    	need.pb (mp(x, y));
    	need.pb (mp(x+1, y));
    	need.pb (mp(x+2, y));
    	need.pb (mp(x+2, y-1));
    	need.pb (mp(x+2, y+1));
    	for (int i=0; i<need.size(); i++)
    		a[need[i].first][need[i].second]=1;
    }
    void rec ( char c, int x, int y, int done=0 )
    {
    	bool all=true;
    	for (int i=x; i<n && i<x+3; i++)
    		for ( int j=((i==x)?y:0); j<m; j++ )
    		{
    			if ( ans*5+done>n*m+3 || done>16)
    				return;
    			if (a[i][j]==1)
    				done++;
    			else 
    				continue;
    			if (modify1 (c, i, j))
    			{
    				all=false;
    				rec(c+1, i, j+1, done-1);
    				undo1 (c, i, j);
    			}
    			if (modify2 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo2 (c, i, j);
    			}
    			if (modify3 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo3 (c, i, j);
    			}
    			if (modify4 (c, i, j))
    			{
    				all=false;
    				rec (c+1, i, j+1, done-1);
    				undo4 (c, i, j);
    			}
    		}
    	if (all)
    	{
    		if (c-'A'>ans)
    		{
    			ans=c-'A';
    			for (int i=0; i<n; i++)
    				for (int j=0; j<m; j++)
    					answer[i][j]=a[i][j];
    		}
    	}
    }
    
    void solve ()
    {
         cin>>n>>m;
    	 for (int i=0; i<n; i++)
    		 for (int j=0; j<m; j++)
    			 a[i][j]=answer[i][j]=1;
    	if (n==7 && m==9)
    	{
    		cout<<"10\nAAAB..CCC\n.ADBBB.C.\n.ADBEEECF\nGDDD.EFFF\nGGGHIE.JF\nGHHHIIIJ.\n...HI.JJJ";
    		return;
    	}
    	if (n==9 && m==7)
    	{
    		cout<<"10\nAAABBB.\n.A..BC.\nDA.EBC.\nDDDECCC\nDFEEE.G\n.FFFGGG\nHFIIIJG\nHHHI.J.\nH..IJJJ";
    		return;
    	}
    	if (n==8 && m==8)
    	{
    		cout<<"10\nAAABBBC.\n.A..B.C.\nDA..BCCC\nDDDEEE.F\nDGGGEFFF\n.HGIE.JF\n.HGIIIJ.\nHHHI.JJJ";
    		return;
    	}
    	if (n==8 && m==9)
    	{
    		cout<<"12\nA.BBBC...\nAAABDCCCE\nA.FBDCEEE\nFFFDDDG.E\nH.FIIIGGG\nHHHJIKG.L\nHJJJIKLLL\n...JKKK.L";
    		return;
    	}
    	if (n==9 && m==8)
    	{
    		cout<<"12\nAAABBB.C\n.AD.BCCC\n.AD.B.EC\nFDDDEEE.\nFFFGGGEH\nFIIIGHHH\n.JIKG.LH\n.JIKKKL.\nJJJK.LLL";
    		return;
    	}
    	 rec ('A', 0, 0);
    	 cout<<ans<<endl;
    	 for (int i=0; i<n; i++)
    	 {
    		 for (int j=0; j<m; j++)
    			 if (answer[i][j]==1)
    				 cout<<".";
    			 else
    				 cout<<answer[i][j];
    		 cout<<endl;
    	 }
    } 
    

    如果给他的代码手动加上一个\(9\times 9\)的情况就能AC了呢。

  • 相关阅读:
    JavaScript学习-4——DOM对象、事件
    JavaScript学习-3——数组、函数、递归
    CSS样式学习-3、轮廓、伪类/元素、display-flex布局
    目前为止学习过的循环解析过程
    早期自学jQuery-二事件
    Hive问题 记录
    `how to install hive
    mongodb读取测试
    reading list
    HIVE相关命令记录
  • 原文地址:https://www.cnblogs.com/withhope/p/10446686.html
Copyright © 2011-2022 走看看