zoukankan      html  css  js  c++  java
  • Python机器学习笔记:使用Keras进行回归预测

      Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow。是一个高度模块化的神经网络库,支持CPU和GPU。

      本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑。

    前期准备之Keras的scikit-learn接口包装器

      Git地址:https://github.com/scikit-learn/scikit-learn

      Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python numerical和scientific libraries Numpy and Scipy。

      我们可以通过包装器将Sequential模块(仅有一个输入)作为Scikit-learn工作流的一部分,相关的包装器定义在keras.wrappers.scikit_learn.py中。

    1:目前有两个包装器可用

      其中实现了sklearn的分类器接口是下面包装器:

    keras.wrappers.scikit_learn.KerasClassifier(build_fn=None, **sk_params)
    

      实现了sklearn的回归器接口的是下面包装器:

    keras.wrappers.scikit_learn.KerasRegressor(build_fn=None, **sk_params)
    

      

    2,参数build_fn:可调用的函数或者类对象

       build_fn应构造,编译并返回一个Keras模型,该模型将稍后用于训练/测试,build_fn值可能为以下三种之一:

    • 1,一个函数
    • 2,一个具有call方法的类对象
    • 3,None,代表你的类继承自KerasClassifier或者KerasRegressor,其call方法为其父类call方法

    3,参数sk_params:模型参数和训练参数

      sk_params以模型参数和训练(超)参数作为参数,合法的模型参数为build_fn的参数,注意:‘build_fn’应提供其参数的默认值。所以我们不传递任何值给sk_params也可以创建一个分类器/回归器。

      sk_params还接受用于调用fitpredictpredict_probascore方法的参数,如nb_epochbatch_size等。这些用于训练或预测的参数按如下顺序选择:

    1. 传递给fitpredictpredict_probascore的字典参数

    2. 传递个sk_params的参数

    3. keras.models.Sequentialfitpredictpredict_probascore的默认值

      当使用scikit-learn的grid_search接口时,合法的可转换参数是你可以传递给sk_params的参数,包括训练参数。即,你可以使用grid_search来搜索最佳的batch_sizenb_epoch以及其他模型参数。

    一,问题描述

      在本文学习中,我们将使用是波士顿房价数据集进行回归预测

      您可以下载此数据集并将其直接保存到当前工作文件名housing.csv(更新:从此处下载数据)。

      该数据集描述了波士顿郊区房屋的13个数字属性,并关注以数千美元(单位为k$)模拟这些郊区房屋的价格。目标值是一个位置的房屋的中值。因此,这是回归预测建模问题。输入属性包括犯罪率,非经营业务面积比例,化学品浓度等。

      这是机器学习中经过深入研究的问题。使用起来很方便,因为所有输入和输出属性都是数字的,并且有506个实例可供使用。

      使用均方误差(MSE)评估的模型的合理性能约为20平方每十万美元(也就是每平方米4500美元)。这个数字对于我们的神经网络来说是一个很好的训练目标。

     housing.csv

     0.00632  18.00   2.310  0  0.5380  6.5750  65.20  4.0900   1  296.0  15.30 396.90   4.98  24.00
     0.02731   0.00   7.070  0  0.4690  6.4210  78.90  4.9671   2  242.0  17.80 396.90   9.14  21.60
     0.02729   0.00   7.070  0  0.4690  7.1850  61.10  4.9671   2  242.0  17.80 392.83   4.03  34.70
     0.03237   0.00   2.180  0  0.4580  6.9980  45.80  6.0622   3  222.0  18.70 394.63   2.94  33.40
     0.06905   0.00   2.180  0  0.4580  7.1470  54.20  6.0622   3  222.0  18.70 396.90   5.33  36.20
     0.02985   0.00   2.180  0  0.4580  6.4300  58.70  6.0622   3  222.0  18.70 394.12   5.21  28.70
     0.08829  12.50   7.870  0  0.5240  6.0120  66.60  5.5605   5  311.0  15.20 395.60  12.43  22.90
     0.14455  12.50   7.870  0  0.5240  6.1720  96.10  5.9505   5  311.0  15.20 396.90  19.15  27.10
     0.21124  12.50   7.870  0  0.5240  5.6310 100.00  6.0821   5  311.0  15.20 386.63  29.93  16.50
     0.17004  12.50   7.870  0  0.5240  6.0040  85.90  6.5921   5  311.0  15.20 386.71  17.10  18.90
     0.22489  12.50   7.870  0  0.5240  6.3770  94.30  6.3467   5  311.0  15.20 392.52  20.45  15.00
     0.11747  12.50   7.870  0  0.5240  6.0090  82.90  6.2267   5  311.0  15.20 396.90  13.27  18.90
     0.09378  12.50   7.870  0  0.5240  5.8890  39.00  5.4509   5  311.0  15.20 390.50  15.71  21.70
     0.62976   0.00   8.140  0  0.5380  5.9490  61.80  4.7075   4  307.0  21.00 396.90   8.26  20.40
     0.63796   0.00   8.140  0  0.5380  6.0960  84.50  4.4619   4  307.0  21.00 380.02  10.26  18.20
     0.62739   0.00   8.140  0  0.5380  5.8340  56.50  4.4986   4  307.0  21.00 395.62   8.47  19.90
     1.05393   0.00   8.140  0  0.5380  5.9350  29.30  4.4986   4  307.0  21.00 386.85   6.58  23.10
     0.78420   0.00   8.140  0  0.5380  5.9900  81.70  4.2579   4  307.0  21.00 386.75  14.67  17.50
     0.80271   0.00   8.140  0  0.5380  5.4560  36.60  3.7965   4  307.0  21.00 288.99  11.69  20.20
     0.72580   0.00   8.140  0  0.5380  5.7270  69.50  3.7965   4  307.0  21.00 390.95  11.28  18.20
     1.25179   0.00   8.140  0  0.5380  5.5700  98.10  3.7979   4  307.0  21.00 376.57  21.02  13.60
     0.85204   0.00   8.140  0  0.5380  5.9650  89.20  4.0123   4  307.0  21.00 392.53  13.83  19.60
     1.23247   0.00   8.140  0  0.5380  6.1420  91.70  3.9769   4  307.0  21.00 396.90  18.72  15.20
     0.98843   0.00   8.140  0  0.5380  5.8130 100.00  4.0952   4  307.0  21.00 394.54  19.88  14.50
     0.75026   0.00   8.140  0  0.5380  5.9240  94.10  4.3996   4  307.0  21.00 394.33  16.30  15.60
     0.84054   0.00   8.140  0  0.5380  5.5990  85.70  4.4546   4  307.0  21.00 303.42  16.51  13.90
     0.67191   0.00   8.140  0  0.5380  5.8130  90.30  4.6820   4  307.0  21.00 376.88  14.81  16.60
     0.95577   0.00   8.140  0  0.5380  6.0470  88.80  4.4534   4  307.0  21.00 306.38  17.28  14.80
     0.77299   0.00   8.140  0  0.5380  6.4950  94.40  4.4547   4  307.0  21.00 387.94  12.80  18.40
     1.00245   0.00   8.140  0  0.5380  6.6740  87.30  4.2390   4  307.0  21.00 380.23  11.98  21.00
     1.13081   0.00   8.140  0  0.5380  5.7130  94.10  4.2330   4  307.0  21.00 360.17  22.60  12.70
     1.35472   0.00   8.140  0  0.5380  6.0720 100.00  4.1750   4  307.0  21.00 376.73  13.04  14.50
     1.38799   0.00   8.140  0  0.5380  5.9500  82.00  3.9900   4  307.0  21.00 232.60  27.71  13.20
     1.15172   0.00   8.140  0  0.5380  5.7010  95.00  3.7872   4  307.0  21.00 358.77  18.35  13.10
     1.61282   0.00   8.140  0  0.5380  6.0960  96.90  3.7598   4  307.0  21.00 248.31  20.34  13.50
     0.06417   0.00   5.960  0  0.4990  5.9330  68.20  3.3603   5  279.0  19.20 396.90   9.68  18.90
     0.09744   0.00   5.960  0  0.4990  5.8410  61.40  3.3779   5  279.0  19.20 377.56  11.41  20.00
     0.08014   0.00   5.960  0  0.4990  5.8500  41.50  3.9342   5  279.0  19.20 396.90   8.77  21.00
     0.17505   0.00   5.960  0  0.4990  5.9660  30.20  3.8473   5  279.0  19.20 393.43  10.13  24.70
     0.02763  75.00   2.950  0  0.4280  6.5950  21.80  5.4011   3  252.0  18.30 395.63   4.32  30.80
     0.03359  75.00   2.950  0  0.4280  7.0240  15.80  5.4011   3  252.0  18.30 395.62   1.98  34.90
     0.12744   0.00   6.910  0  0.4480  6.7700   2.90  5.7209   3  233.0  17.90 385.41   4.84  26.60
     0.14150   0.00   6.910  0  0.4480  6.1690   6.60  5.7209   3  233.0  17.90 383.37   5.81  25.30
     0.15936   0.00   6.910  0  0.4480  6.2110   6.50  5.7209   3  233.0  17.90 394.46   7.44  24.70
     0.12269   0.00   6.910  0  0.4480  6.0690  40.00  5.7209   3  233.0  17.90 389.39   9.55  21.20
     0.17142   0.00   6.910  0  0.4480  5.6820  33.80  5.1004   3  233.0  17.90 396.90  10.21  19.30
     0.18836   0.00   6.910  0  0.4480  5.7860  33.30  5.1004   3  233.0  17.90 396.90  14.15  20.00
     0.22927   0.00   6.910  0  0.4480  6.0300  85.50  5.6894   3  233.0  17.90 392.74  18.80  16.60
     0.25387   0.00   6.910  0  0.4480  5.3990  95.30  5.8700   3  233.0  17.90 396.90  30.81  14.40
     0.21977   0.00   6.910  0  0.4480  5.6020  62.00  6.0877   3  233.0  17.90 396.90  16.20  19.40
     0.08873  21.00   5.640  0  0.4390  5.9630  45.70  6.8147   4  243.0  16.80 395.56  13.45  19.70
     0.04337  21.00   5.640  0  0.4390  6.1150  63.00  6.8147   4  243.0  16.80 393.97   9.43  20.50
     0.05360  21.00   5.640  0  0.4390  6.5110  21.10  6.8147   4  243.0  16.80 396.90   5.28  25.00
     0.04981  21.00   5.640  0  0.4390  5.9980  21.40  6.8147   4  243.0  16.80 396.90   8.43  23.40
     0.01360  75.00   4.000  0  0.4100  5.8880  47.60  7.3197   3  469.0  21.10 396.90  14.80  18.90
     0.01311  90.00   1.220  0  0.4030  7.2490  21.90  8.6966   5  226.0  17.90 395.93   4.81  35.40
     0.02055  85.00   0.740  0  0.4100  6.3830  35.70  9.1876   2  313.0  17.30 396.90   5.77  24.70
     0.01432 100.00   1.320  0  0.4110  6.8160  40.50  8.3248   5  256.0  15.10 392.90   3.95  31.60
     0.15445  25.00   5.130  0  0.4530  6.1450  29.20  7.8148   8  284.0  19.70 390.68   6.86  23.30
     0.10328  25.00   5.130  0  0.4530  5.9270  47.20  6.9320   8  284.0  19.70 396.90   9.22  19.60
     0.14932  25.00   5.130  0  0.4530  5.7410  66.20  7.2254   8  284.0  19.70 395.11  13.15  18.70
     0.17171  25.00   5.130  0  0.4530  5.9660  93.40  6.8185   8  284.0  19.70 378.08  14.44  16.00
     0.11027  25.00   5.130  0  0.4530  6.4560  67.80  7.2255   8  284.0  19.70 396.90   6.73  22.20
     0.12650  25.00   5.130  0  0.4530  6.7620  43.40  7.9809   8  284.0  19.70 395.58   9.50  25.00
     0.01951  17.50   1.380  0  0.4161  7.1040  59.50  9.2229   3  216.0  18.60 393.24   8.05  33.00
     0.03584  80.00   3.370  0  0.3980  6.2900  17.80  6.6115   4  337.0  16.10 396.90   4.67  23.50
     0.04379  80.00   3.370  0  0.3980  5.7870  31.10  6.6115   4  337.0  16.10 396.90  10.24  19.40
     0.05789  12.50   6.070  0  0.4090  5.8780  21.40  6.4980   4  345.0  18.90 396.21   8.10  22.00
     0.13554  12.50   6.070  0  0.4090  5.5940  36.80  6.4980   4  345.0  18.90 396.90  13.09  17.40
     0.12816  12.50   6.070  0  0.4090  5.8850  33.00  6.4980   4  345.0  18.90 396.90   8.79  20.90
     0.08826   0.00  10.810  0  0.4130  6.4170   6.60  5.2873   4  305.0  19.20 383.73   6.72  24.20
     0.15876   0.00  10.810  0  0.4130  5.9610  17.50  5.2873   4  305.0  19.20 376.94   9.88  21.70
     0.09164   0.00  10.810  0  0.4130  6.0650   7.80  5.2873   4  305.0  19.20 390.91   5.52  22.80
     0.19539   0.00  10.810  0  0.4130  6.2450   6.20  5.2873   4  305.0  19.20 377.17   7.54  23.40
     0.07896   0.00  12.830  0  0.4370  6.2730   6.00  4.2515   5  398.0  18.70 394.92   6.78  24.10
     0.09512   0.00  12.830  0  0.4370  6.2860  45.00  4.5026   5  398.0  18.70 383.23   8.94  21.40
     0.10153   0.00  12.830  0  0.4370  6.2790  74.50  4.0522   5  398.0  18.70 373.66  11.97  20.00
     0.08707   0.00  12.830  0  0.4370  6.1400  45.80  4.0905   5  398.0  18.70 386.96  10.27  20.80
     0.05646   0.00  12.830  0  0.4370  6.2320  53.70  5.0141   5  398.0  18.70 386.40  12.34  21.20
     0.08387   0.00  12.830  0  0.4370  5.8740  36.60  4.5026   5  398.0  18.70 396.06   9.10  20.30
     0.04113  25.00   4.860  0  0.4260  6.7270  33.50  5.4007   4  281.0  19.00 396.90   5.29  28.00
     0.04462  25.00   4.860  0  0.4260  6.6190  70.40  5.4007   4  281.0  19.00 395.63   7.22  23.90
     0.03659  25.00   4.860  0  0.4260  6.3020  32.20  5.4007   4  281.0  19.00 396.90   6.72  24.80
     0.03551  25.00   4.860  0  0.4260  6.1670  46.70  5.4007   4  281.0  19.00 390.64   7.51  22.90
     0.05059   0.00   4.490  0  0.4490  6.3890  48.00  4.7794   3  247.0  18.50 396.90   9.62  23.90
     0.05735   0.00   4.490  0  0.4490  6.6300  56.10  4.4377   3  247.0  18.50 392.30   6.53  26.60
     0.05188   0.00   4.490  0  0.4490  6.0150  45.10  4.4272   3  247.0  18.50 395.99  12.86  22.50
     0.07151   0.00   4.490  0  0.4490  6.1210  56.80  3.7476   3  247.0  18.50 395.15   8.44  22.20
     0.05660   0.00   3.410  0  0.4890  7.0070  86.30  3.4217   2  270.0  17.80 396.90   5.50  23.60
     0.05302   0.00   3.410  0  0.4890  7.0790  63.10  3.4145   2  270.0  17.80 396.06   5.70  28.70
     0.04684   0.00   3.410  0  0.4890  6.4170  66.10  3.0923   2  270.0  17.80 392.18   8.81  22.60
     0.03932   0.00   3.410  0  0.4890  6.4050  73.90  3.0921   2  270.0  17.80 393.55   8.20  22.00
     0.04203  28.00  15.040  0  0.4640  6.4420  53.60  3.6659   4  270.0  18.20 395.01   8.16  22.90
     0.02875  28.00  15.040  0  0.4640  6.2110  28.90  3.6659   4  270.0  18.20 396.33   6.21  25.00
     0.04294  28.00  15.040  0  0.4640  6.2490  77.30  3.6150   4  270.0  18.20 396.90  10.59  20.60
     0.12204   0.00   2.890  0  0.4450  6.6250  57.80  3.4952   2  276.0  18.00 357.98   6.65  28.40
     0.11504   0.00   2.890  0  0.4450  6.1630  69.60  3.4952   2  276.0  18.00 391.83  11.34  21.40
     0.12083   0.00   2.890  0  0.4450  8.0690  76.00  3.4952   2  276.0  18.00 396.90   4.21  38.70
     0.08187   0.00   2.890  0  0.4450  7.8200  36.90  3.4952   2  276.0  18.00 393.53   3.57  43.80
     0.06860   0.00   2.890  0  0.4450  7.4160  62.50  3.4952   2  276.0  18.00 396.90   6.19  33.20
     0.14866   0.00   8.560  0  0.5200  6.7270  79.90  2.7778   5  384.0  20.90 394.76   9.42  27.50
     0.11432   0.00   8.560  0  0.5200  6.7810  71.30  2.8561   5  384.0  20.90 395.58   7.67  26.50
     0.22876   0.00   8.560  0  0.5200  6.4050  85.40  2.7147   5  384.0  20.90  70.80  10.63  18.60
     0.21161   0.00   8.560  0  0.5200  6.1370  87.40  2.7147   5  384.0  20.90 394.47  13.44  19.30
     0.13960   0.00   8.560  0  0.5200  6.1670  90.00  2.4210   5  384.0  20.90 392.69  12.33  20.10
     0.13262   0.00   8.560  0  0.5200  5.8510  96.70  2.1069   5  384.0  20.90 394.05  16.47  19.50
     0.17120   0.00   8.560  0  0.5200  5.8360  91.90  2.2110   5  384.0  20.90 395.67  18.66  19.50
     0.13117   0.00   8.560  0  0.5200  6.1270  85.20  2.1224   5  384.0  20.90 387.69  14.09  20.40
     0.12802   0.00   8.560  0  0.5200  6.4740  97.10  2.4329   5  384.0  20.90 395.24  12.27  19.80
     0.26363   0.00   8.560  0  0.5200  6.2290  91.20  2.5451   5  384.0  20.90 391.23  15.55  19.40
     0.10793   0.00   8.560  0  0.5200  6.1950  54.40  2.7778   5  384.0  20.90 393.49  13.00  21.70
     0.10084   0.00  10.010  0  0.5470  6.7150  81.60  2.6775   6  432.0  17.80 395.59  10.16  22.80
     0.12329   0.00  10.010  0  0.5470  5.9130  92.90  2.3534   6  432.0  17.80 394.95  16.21  18.80
     0.22212   0.00  10.010  0  0.5470  6.0920  95.40  2.5480   6  432.0  17.80 396.90  17.09  18.70
     0.14231   0.00  10.010  0  0.5470  6.2540  84.20  2.2565   6  432.0  17.80 388.74  10.45  18.50
     0.17134   0.00  10.010  0  0.5470  5.9280  88.20  2.4631   6  432.0  17.80 344.91  15.76  18.30
     0.13158   0.00  10.010  0  0.5470  6.1760  72.50  2.7301   6  432.0  17.80 393.30  12.04  21.20
     0.15098   0.00  10.010  0  0.5470  6.0210  82.60  2.7474   6  432.0  17.80 394.51  10.30  19.20
     0.13058   0.00  10.010  0  0.5470  5.8720  73.10  2.4775   6  432.0  17.80 338.63  15.37  20.40
     0.14476   0.00  10.010  0  0.5470  5.7310  65.20  2.7592   6  432.0  17.80 391.50  13.61  19.30
     0.06899   0.00  25.650  0  0.5810  5.8700  69.70  2.2577   2  188.0  19.10 389.15  14.37  22.00
     0.07165   0.00  25.650  0  0.5810  6.0040  84.10  2.1974   2  188.0  19.10 377.67  14.27  20.30
     0.09299   0.00  25.650  0  0.5810  5.9610  92.90  2.0869   2  188.0  19.10 378.09  17.93  20.50
     0.15038   0.00  25.650  0  0.5810  5.8560  97.00  1.9444   2  188.0  19.10 370.31  25.41  17.30
     0.09849   0.00  25.650  0  0.5810  5.8790  95.80  2.0063   2  188.0  19.10 379.38  17.58  18.80
     0.16902   0.00  25.650  0  0.5810  5.9860  88.40  1.9929   2  188.0  19.10 385.02  14.81  21.40
     0.38735   0.00  25.650  0  0.5810  5.6130  95.60  1.7572   2  188.0  19.10 359.29  27.26  15.70
     0.25915   0.00  21.890  0  0.6240  5.6930  96.00  1.7883   4  437.0  21.20 392.11  17.19  16.20
     0.32543   0.00  21.890  0  0.6240  6.4310  98.80  1.8125   4  437.0  21.20 396.90  15.39  18.00
     0.88125   0.00  21.890  0  0.6240  5.6370  94.70  1.9799   4  437.0  21.20 396.90  18.34  14.30
     0.34006   0.00  21.890  0  0.6240  6.4580  98.90  2.1185   4  437.0  21.20 395.04  12.60  19.20
     1.19294   0.00  21.890  0  0.6240  6.3260  97.70  2.2710   4  437.0  21.20 396.90  12.26  19.60
     0.59005   0.00  21.890  0  0.6240  6.3720  97.90  2.3274   4  437.0  21.20 385.76  11.12  23.00
     0.32982   0.00  21.890  0  0.6240  5.8220  95.40  2.4699   4  437.0  21.20 388.69  15.03  18.40
     0.97617   0.00  21.890  0  0.6240  5.7570  98.40  2.3460   4  437.0  21.20 262.76  17.31  15.60
     0.55778   0.00  21.890  0  0.6240  6.3350  98.20  2.1107   4  437.0  21.20 394.67  16.96  18.10
     0.32264   0.00  21.890  0  0.6240  5.9420  93.50  1.9669   4  437.0  21.20 378.25  16.90  17.40
     0.35233   0.00  21.890  0  0.6240  6.4540  98.40  1.8498   4  437.0  21.20 394.08  14.59  17.10
     0.24980   0.00  21.890  0  0.6240  5.8570  98.20  1.6686   4  437.0  21.20 392.04  21.32  13.30
     0.54452   0.00  21.890  0  0.6240  6.1510  97.90  1.6687   4  437.0  21.20 396.90  18.46  17.80
     0.29090   0.00  21.890  0  0.6240  6.1740  93.60  1.6119   4  437.0  21.20 388.08  24.16  14.00
     1.62864   0.00  21.890  0  0.6240  5.0190 100.00  1.4394   4  437.0  21.20 396.90  34.41  14.40
     3.32105   0.00  19.580  1  0.8710  5.4030 100.00  1.3216   5  403.0  14.70 396.90  26.82  13.40
     4.09740   0.00  19.580  0  0.8710  5.4680 100.00  1.4118   5  403.0  14.70 396.90  26.42  15.60
     2.77974   0.00  19.580  0  0.8710  4.9030  97.80  1.3459   5  403.0  14.70 396.90  29.29  11.80
     2.37934   0.00  19.580  0  0.8710  6.1300 100.00  1.4191   5  403.0  14.70 172.91  27.80  13.80
     2.15505   0.00  19.580  0  0.8710  5.6280 100.00  1.5166   5  403.0  14.70 169.27  16.65  15.60
     2.36862   0.00  19.580  0  0.8710  4.9260  95.70  1.4608   5  403.0  14.70 391.71  29.53  14.60
     2.33099   0.00  19.580  0  0.8710  5.1860  93.80  1.5296   5  403.0  14.70 356.99  28.32  17.80
     2.73397   0.00  19.580  0  0.8710  5.5970  94.90  1.5257   5  403.0  14.70 351.85  21.45  15.40
     1.65660   0.00  19.580  0  0.8710  6.1220  97.30  1.6180   5  403.0  14.70 372.80  14.10  21.50
     1.49632   0.00  19.580  0  0.8710  5.4040 100.00  1.5916   5  403.0  14.70 341.60  13.28  19.60
     1.12658   0.00  19.580  1  0.8710  5.0120  88.00  1.6102   5  403.0  14.70 343.28  12.12  15.30
     2.14918   0.00  19.580  0  0.8710  5.7090  98.50  1.6232   5  403.0  14.70 261.95  15.79  19.40
     1.41385   0.00  19.580  1  0.8710  6.1290  96.00  1.7494   5  403.0  14.70 321.02  15.12  17.00
     3.53501   0.00  19.580  1  0.8710  6.1520  82.60  1.7455   5  403.0  14.70  88.01  15.02  15.60
     2.44668   0.00  19.580  0  0.8710  5.2720  94.00  1.7364   5  403.0  14.70  88.63  16.14  13.10
     1.22358   0.00  19.580  0  0.6050  6.9430  97.40  1.8773   5  403.0  14.70 363.43   4.59  41.30
     1.34284   0.00  19.580  0  0.6050  6.0660 100.00  1.7573   5  403.0  14.70 353.89   6.43  24.30
     1.42502   0.00  19.580  0  0.8710  6.5100 100.00  1.7659   5  403.0  14.70 364.31   7.39  23.30
     1.27346   0.00  19.580  1  0.6050  6.2500  92.60  1.7984   5  403.0  14.70 338.92   5.50  27.00
     1.46336   0.00  19.580  0  0.6050  7.4890  90.80  1.9709   5  403.0  14.70 374.43   1.73  50.00
     1.83377   0.00  19.580  1  0.6050  7.8020  98.20  2.0407   5  403.0  14.70 389.61   1.92  50.00
     1.51902   0.00  19.580  1  0.6050  8.3750  93.90  2.1620   5  403.0  14.70 388.45   3.32  50.00
     2.24236   0.00  19.580  0  0.6050  5.8540  91.80  2.4220   5  403.0  14.70 395.11  11.64  22.70
     2.92400   0.00  19.580  0  0.6050  6.1010  93.00  2.2834   5  403.0  14.70 240.16   9.81  25.00
     2.01019   0.00  19.580  0  0.6050  7.9290  96.20  2.0459   5  403.0  14.70 369.30   3.70  50.00
     1.80028   0.00  19.580  0  0.6050  5.8770  79.20  2.4259   5  403.0  14.70 227.61  12.14  23.80
     2.30040   0.00  19.580  0  0.6050  6.3190  96.10  2.1000   5  403.0  14.70 297.09  11.10  23.80
     2.44953   0.00  19.580  0  0.6050  6.4020  95.20  2.2625   5  403.0  14.70 330.04  11.32  22.30
     1.20742   0.00  19.580  0  0.6050  5.8750  94.60  2.4259   5  403.0  14.70 292.29  14.43  17.40
     2.31390   0.00  19.580  0  0.6050  5.8800  97.30  2.3887   5  403.0  14.70 348.13  12.03  19.10
     0.13914   0.00   4.050  0  0.5100  5.5720  88.50  2.5961   5  296.0  16.60 396.90  14.69  23.10
     0.09178   0.00   4.050  0  0.5100  6.4160  84.10  2.6463   5  296.0  16.60 395.50   9.04  23.60
     0.08447   0.00   4.050  0  0.5100  5.8590  68.70  2.7019   5  296.0  16.60 393.23   9.64  22.60
     0.06664   0.00   4.050  0  0.5100  6.5460  33.10  3.1323   5  296.0  16.60 390.96   5.33  29.40
     0.07022   0.00   4.050  0  0.5100  6.0200  47.20  3.5549   5  296.0  16.60 393.23  10.11  23.20
     0.05425   0.00   4.050  0  0.5100  6.3150  73.40  3.3175   5  296.0  16.60 395.60   6.29  24.60
     0.06642   0.00   4.050  0  0.5100  6.8600  74.40  2.9153   5  296.0  16.60 391.27   6.92  29.90
     0.05780   0.00   2.460  0  0.4880  6.9800  58.40  2.8290   3  193.0  17.80 396.90   5.04  37.20
     0.06588   0.00   2.460  0  0.4880  7.7650  83.30  2.7410   3  193.0  17.80 395.56   7.56  39.80
     0.06888   0.00   2.460  0  0.4880  6.1440  62.20  2.5979   3  193.0  17.80 396.90   9.45  36.20
     0.09103   0.00   2.460  0  0.4880  7.1550  92.20  2.7006   3  193.0  17.80 394.12   4.82  37.90
     0.10008   0.00   2.460  0  0.4880  6.5630  95.60  2.8470   3  193.0  17.80 396.90   5.68  32.50
     0.08308   0.00   2.460  0  0.4880  5.6040  89.80  2.9879   3  193.0  17.80 391.00  13.98  26.40
     0.06047   0.00   2.460  0  0.4880  6.1530  68.80  3.2797   3  193.0  17.80 387.11  13.15  29.60
     0.05602   0.00   2.460  0  0.4880  7.8310  53.60  3.1992   3  193.0  17.80 392.63   4.45  50.00
     0.07875  45.00   3.440  0  0.4370  6.7820  41.10  3.7886   5  398.0  15.20 393.87   6.68  32.00
     0.12579  45.00   3.440  0  0.4370  6.5560  29.10  4.5667   5  398.0  15.20 382.84   4.56  29.80
     0.08370  45.00   3.440  0  0.4370  7.1850  38.90  4.5667   5  398.0  15.20 396.90   5.39  34.90
     0.09068  45.00   3.440  0  0.4370  6.9510  21.50  6.4798   5  398.0  15.20 377.68   5.10  37.00
     0.06911  45.00   3.440  0  0.4370  6.7390  30.80  6.4798   5  398.0  15.20 389.71   4.69  30.50
     0.08664  45.00   3.440  0  0.4370  7.1780  26.30  6.4798   5  398.0  15.20 390.49   2.87  36.40
     0.02187  60.00   2.930  0  0.4010  6.8000   9.90  6.2196   1  265.0  15.60 393.37   5.03  31.10
     0.01439  60.00   2.930  0  0.4010  6.6040  18.80  6.2196   1  265.0  15.60 376.70   4.38  29.10
     0.01381  80.00   0.460  0  0.4220  7.8750  32.00  5.6484   4  255.0  14.40 394.23   2.97  50.00
     0.04011  80.00   1.520  0  0.4040  7.2870  34.10  7.3090   2  329.0  12.60 396.90   4.08  33.30
     0.04666  80.00   1.520  0  0.4040  7.1070  36.60  7.3090   2  329.0  12.60 354.31   8.61  30.30
     0.03768  80.00   1.520  0  0.4040  7.2740  38.30  7.3090   2  329.0  12.60 392.20   6.62  34.60
     0.03150  95.00   1.470  0  0.4030  6.9750  15.30  7.6534   3  402.0  17.00 396.90   4.56  34.90
     0.01778  95.00   1.470  0  0.4030  7.1350  13.90  7.6534   3  402.0  17.00 384.30   4.45  32.90
     0.03445  82.50   2.030  0  0.4150  6.1620  38.40  6.2700   2  348.0  14.70 393.77   7.43  24.10
     0.02177  82.50   2.030  0  0.4150  7.6100  15.70  6.2700   2  348.0  14.70 395.38   3.11  42.30
     0.03510  95.00   2.680  0  0.4161  7.8530  33.20  5.1180   4  224.0  14.70 392.78   3.81  48.50
     0.02009  95.00   2.680  0  0.4161  8.0340  31.90  5.1180   4  224.0  14.70 390.55   2.88  50.00
     0.13642   0.00  10.590  0  0.4890  5.8910  22.30  3.9454   4  277.0  18.60 396.90  10.87  22.60
     0.22969   0.00  10.590  0  0.4890  6.3260  52.50  4.3549   4  277.0  18.60 394.87  10.97  24.40
     0.25199   0.00  10.590  0  0.4890  5.7830  72.70  4.3549   4  277.0  18.60 389.43  18.06  22.50
     0.13587   0.00  10.590  1  0.4890  6.0640  59.10  4.2392   4  277.0  18.60 381.32  14.66  24.40
     0.43571   0.00  10.590  1  0.4890  5.3440 100.00  3.8750   4  277.0  18.60 396.90  23.09  20.00
     0.17446   0.00  10.590  1  0.4890  5.9600  92.10  3.8771   4  277.0  18.60 393.25  17.27  21.70
     0.37578   0.00  10.590  1  0.4890  5.4040  88.60  3.6650   4  277.0  18.60 395.24  23.98  19.30
     0.21719   0.00  10.590  1  0.4890  5.8070  53.80  3.6526   4  277.0  18.60 390.94  16.03  22.40
     0.14052   0.00  10.590  0  0.4890  6.3750  32.30  3.9454   4  277.0  18.60 385.81   9.38  28.10
     0.28955   0.00  10.590  0  0.4890  5.4120   9.80  3.5875   4  277.0  18.60 348.93  29.55  23.70
     0.19802   0.00  10.590  0  0.4890  6.1820  42.40  3.9454   4  277.0  18.60 393.63   9.47  25.00
     0.04560   0.00  13.890  1  0.5500  5.8880  56.00  3.1121   5  276.0  16.40 392.80  13.51  23.30
     0.07013   0.00  13.890  0  0.5500  6.6420  85.10  3.4211   5  276.0  16.40 392.78   9.69  28.70
     0.11069   0.00  13.890  1  0.5500  5.9510  93.80  2.8893   5  276.0  16.40 396.90  17.92  21.50
     0.11425   0.00  13.890  1  0.5500  6.3730  92.40  3.3633   5  276.0  16.40 393.74  10.50  23.00
     0.35809   0.00   6.200  1  0.5070  6.9510  88.50  2.8617   8  307.0  17.40 391.70   9.71  26.70
     0.40771   0.00   6.200  1  0.5070  6.1640  91.30  3.0480   8  307.0  17.40 395.24  21.46  21.70
     0.62356   0.00   6.200  1  0.5070  6.8790  77.70  3.2721   8  307.0  17.40 390.39   9.93  27.50
     0.61470   0.00   6.200  0  0.5070  6.6180  80.80  3.2721   8  307.0  17.40 396.90   7.60  30.10
     0.31533   0.00   6.200  0  0.5040  8.2660  78.30  2.8944   8  307.0  17.40 385.05   4.14  44.80
     0.52693   0.00   6.200  0  0.5040  8.7250  83.00  2.8944   8  307.0  17.40 382.00   4.63  50.00
     0.38214   0.00   6.200  0  0.5040  8.0400  86.50  3.2157   8  307.0  17.40 387.38   3.13  37.60
     0.41238   0.00   6.200  0  0.5040  7.1630  79.90  3.2157   8  307.0  17.40 372.08   6.36  31.60
     0.29819   0.00   6.200  0  0.5040  7.6860  17.00  3.3751   8  307.0  17.40 377.51   3.92  46.70
     0.44178   0.00   6.200  0  0.5040  6.5520  21.40  3.3751   8  307.0  17.40 380.34   3.76  31.50
     0.53700   0.00   6.200  0  0.5040  5.9810  68.10  3.6715   8  307.0  17.40 378.35  11.65  24.30
     0.46296   0.00   6.200  0  0.5040  7.4120  76.90  3.6715   8  307.0  17.40 376.14   5.25  31.70
     0.57529   0.00   6.200  0  0.5070  8.3370  73.30  3.8384   8  307.0  17.40 385.91   2.47  41.70
     0.33147   0.00   6.200  0  0.5070  8.2470  70.40  3.6519   8  307.0  17.40 378.95   3.95  48.30
     0.44791   0.00   6.200  1  0.5070  6.7260  66.50  3.6519   8  307.0  17.40 360.20   8.05  29.00
     0.33045   0.00   6.200  0  0.5070  6.0860  61.50  3.6519   8  307.0  17.40 376.75  10.88  24.00
     0.52058   0.00   6.200  1  0.5070  6.6310  76.50  4.1480   8  307.0  17.40 388.45   9.54  25.10
     0.51183   0.00   6.200  0  0.5070  7.3580  71.60  4.1480   8  307.0  17.40 390.07   4.73  31.50
     0.08244  30.00   4.930  0  0.4280  6.4810  18.50  6.1899   6  300.0  16.60 379.41   6.36  23.70
     0.09252  30.00   4.930  0  0.4280  6.6060  42.20  6.1899   6  300.0  16.60 383.78   7.37  23.30
     0.11329  30.00   4.930  0  0.4280  6.8970  54.30  6.3361   6  300.0  16.60 391.25  11.38  22.00
     0.10612  30.00   4.930  0  0.4280  6.0950  65.10  6.3361   6  300.0  16.60 394.62  12.40  20.10
     0.10290  30.00   4.930  0  0.4280  6.3580  52.90  7.0355   6  300.0  16.60 372.75  11.22  22.20
     0.12757  30.00   4.930  0  0.4280  6.3930   7.80  7.0355   6  300.0  16.60 374.71   5.19  23.70
     0.20608  22.00   5.860  0  0.4310  5.5930  76.50  7.9549   7  330.0  19.10 372.49  12.50  17.60
     0.19133  22.00   5.860  0  0.4310  5.6050  70.20  7.9549   7  330.0  19.10 389.13  18.46  18.50
     0.33983  22.00   5.860  0  0.4310  6.1080  34.90  8.0555   7  330.0  19.10 390.18   9.16  24.30
     0.19657  22.00   5.860  0  0.4310  6.2260  79.20  8.0555   7  330.0  19.10 376.14  10.15  20.50
     0.16439  22.00   5.860  0  0.4310  6.4330  49.10  7.8265   7  330.0  19.10 374.71   9.52  24.50
     0.19073  22.00   5.860  0  0.4310  6.7180  17.50  7.8265   7  330.0  19.10 393.74   6.56  26.20
     0.14030  22.00   5.860  0  0.4310  6.4870  13.00  7.3967   7  330.0  19.10 396.28   5.90  24.40
     0.21409  22.00   5.860  0  0.4310  6.4380   8.90  7.3967   7  330.0  19.10 377.07   3.59  24.80
     0.08221  22.00   5.860  0  0.4310  6.9570   6.80  8.9067   7  330.0  19.10 386.09   3.53  29.60
     0.36894  22.00   5.860  0  0.4310  8.2590   8.40  8.9067   7  330.0  19.10 396.90   3.54  42.80
     0.04819  80.00   3.640  0  0.3920  6.1080  32.00  9.2203   1  315.0  16.40 392.89   6.57  21.90
     0.03548  80.00   3.640  0  0.3920  5.8760  19.10  9.2203   1  315.0  16.40 395.18   9.25  20.90
     0.01538  90.00   3.750  0  0.3940  7.4540  34.20  6.3361   3  244.0  15.90 386.34   3.11  44.00
     0.61154  20.00   3.970  0  0.6470  8.7040  86.90  1.8010   5  264.0  13.00 389.70   5.12  50.00
     0.66351  20.00   3.970  0  0.6470  7.3330 100.00  1.8946   5  264.0  13.00 383.29   7.79  36.00
     0.65665  20.00   3.970  0  0.6470  6.8420 100.00  2.0107   5  264.0  13.00 391.93   6.90  30.10
     0.54011  20.00   3.970  0  0.6470  7.2030  81.80  2.1121   5  264.0  13.00 392.80   9.59  33.80
     0.53412  20.00   3.970  0  0.6470  7.5200  89.40  2.1398   5  264.0  13.00 388.37   7.26  43.10
     0.52014  20.00   3.970  0  0.6470  8.3980  91.50  2.2885   5  264.0  13.00 386.86   5.91  48.80
     0.82526  20.00   3.970  0  0.6470  7.3270  94.50  2.0788   5  264.0  13.00 393.42  11.25  31.00
     0.55007  20.00   3.970  0  0.6470  7.2060  91.60  1.9301   5  264.0  13.00 387.89   8.10  36.50
     0.76162  20.00   3.970  0  0.6470  5.5600  62.80  1.9865   5  264.0  13.00 392.40  10.45  22.80
     0.78570  20.00   3.970  0  0.6470  7.0140  84.60  2.1329   5  264.0  13.00 384.07  14.79  30.70
     0.57834  20.00   3.970  0  0.5750  8.2970  67.00  2.4216   5  264.0  13.00 384.54   7.44  50.00
     0.54050  20.00   3.970  0  0.5750  7.4700  52.60  2.8720   5  264.0  13.00 390.30   3.16  43.50
     0.09065  20.00   6.960  1  0.4640  5.9200  61.50  3.9175   3  223.0  18.60 391.34  13.65  20.70
     0.29916  20.00   6.960  0  0.4640  5.8560  42.10  4.4290   3  223.0  18.60 388.65  13.00  21.10
     0.16211  20.00   6.960  0  0.4640  6.2400  16.30  4.4290   3  223.0  18.60 396.90   6.59  25.20
     0.11460  20.00   6.960  0  0.4640  6.5380  58.70  3.9175   3  223.0  18.60 394.96   7.73  24.40
     0.22188  20.00   6.960  1  0.4640  7.6910  51.80  4.3665   3  223.0  18.60 390.77   6.58  35.20
     0.05644  40.00   6.410  1  0.4470  6.7580  32.90  4.0776   4  254.0  17.60 396.90   3.53  32.40
     0.09604  40.00   6.410  0  0.4470  6.8540  42.80  4.2673   4  254.0  17.60 396.90   2.98  32.00
     0.10469  40.00   6.410  1  0.4470  7.2670  49.00  4.7872   4  254.0  17.60 389.25   6.05  33.20
     0.06127  40.00   6.410  1  0.4470  6.8260  27.60  4.8628   4  254.0  17.60 393.45   4.16  33.10
     0.07978  40.00   6.410  0  0.4470  6.4820  32.10  4.1403   4  254.0  17.60 396.90   7.19  29.10
     0.21038  20.00   3.330  0  0.4429  6.8120  32.20  4.1007   5  216.0  14.90 396.90   4.85  35.10
     0.03578  20.00   3.330  0  0.4429  7.8200  64.50  4.6947   5  216.0  14.90 387.31   3.76  45.40
     0.03705  20.00   3.330  0  0.4429  6.9680  37.20  5.2447   5  216.0  14.90 392.23   4.59  35.40
     0.06129  20.00   3.330  1  0.4429  7.6450  49.70  5.2119   5  216.0  14.90 377.07   3.01  46.00
     0.01501  90.00   1.210  1  0.4010  7.9230  24.80  5.8850   1  198.0  13.60 395.52   3.16  50.00
     0.00906  90.00   2.970  0  0.4000  7.0880  20.80  7.3073   1  285.0  15.30 394.72   7.85  32.20
     0.01096  55.00   2.250  0  0.3890  6.4530  31.90  7.3073   1  300.0  15.30 394.72   8.23  22.00
     0.01965  80.00   1.760  0  0.3850  6.2300  31.50  9.0892   1  241.0  18.20 341.60  12.93  20.10
     0.03871  52.50   5.320  0  0.4050  6.2090  31.30  7.3172   6  293.0  16.60 396.90   7.14  23.20
     0.04590  52.50   5.320  0  0.4050  6.3150  45.60  7.3172   6  293.0  16.60 396.90   7.60  22.30
     0.04297  52.50   5.320  0  0.4050  6.5650  22.90  7.3172   6  293.0  16.60 371.72   9.51  24.80
     0.03502  80.00   4.950  0  0.4110  6.8610  27.90  5.1167   4  245.0  19.20 396.90   3.33  28.50
     0.07886  80.00   4.950  0  0.4110  7.1480  27.70  5.1167   4  245.0  19.20 396.90   3.56  37.30
     0.03615  80.00   4.950  0  0.4110  6.6300  23.40  5.1167   4  245.0  19.20 396.90   4.70  27.90
     0.08265   0.00  13.920  0  0.4370  6.1270  18.40  5.5027   4  289.0  16.00 396.90   8.58  23.90
     0.08199   0.00  13.920  0  0.4370  6.0090  42.30  5.5027   4  289.0  16.00 396.90  10.40  21.70
     0.12932   0.00  13.920  0  0.4370  6.6780  31.10  5.9604   4  289.0  16.00 396.90   6.27  28.60
     0.05372   0.00  13.920  0  0.4370  6.5490  51.00  5.9604   4  289.0  16.00 392.85   7.39  27.10
     0.14103   0.00  13.920  0  0.4370  5.7900  58.00  6.3200   4  289.0  16.00 396.90  15.84  20.30
     0.06466  70.00   2.240  0  0.4000  6.3450  20.10  7.8278   5  358.0  14.80 368.24   4.97  22.50
     0.05561  70.00   2.240  0  0.4000  7.0410  10.00  7.8278   5  358.0  14.80 371.58   4.74  29.00
     0.04417  70.00   2.240  0  0.4000  6.8710  47.40  7.8278   5  358.0  14.80 390.86   6.07  24.80
     0.03537  34.00   6.090  0  0.4330  6.5900  40.40  5.4917   7  329.0  16.10 395.75   9.50  22.00
     0.09266  34.00   6.090  0  0.4330  6.4950  18.40  5.4917   7  329.0  16.10 383.61   8.67  26.40
     0.10000  34.00   6.090  0  0.4330  6.9820  17.70  5.4917   7  329.0  16.10 390.43   4.86  33.10
     0.05515  33.00   2.180  0  0.4720  7.2360  41.10  4.0220   7  222.0  18.40 393.68   6.93  36.10
     0.05479  33.00   2.180  0  0.4720  6.6160  58.10  3.3700   7  222.0  18.40 393.36   8.93  28.40
     0.07503  33.00   2.180  0  0.4720  7.4200  71.90  3.0992   7  222.0  18.40 396.90   6.47  33.40
     0.04932  33.00   2.180  0  0.4720  6.8490  70.30  3.1827   7  222.0  18.40 396.90   7.53  28.20
     0.49298   0.00   9.900  0  0.5440  6.6350  82.50  3.3175   4  304.0  18.40 396.90   4.54  22.80
     0.34940   0.00   9.900  0  0.5440  5.9720  76.70  3.1025   4  304.0  18.40 396.24   9.97  20.30
     2.63548   0.00   9.900  0  0.5440  4.9730  37.80  2.5194   4  304.0  18.40 350.45  12.64  16.10
     0.79041   0.00   9.900  0  0.5440  6.1220  52.80  2.6403   4  304.0  18.40 396.90   5.98  22.10
     0.26169   0.00   9.900  0  0.5440  6.0230  90.40  2.8340   4  304.0  18.40 396.30  11.72  19.40
     0.26938   0.00   9.900  0  0.5440  6.2660  82.80  3.2628   4  304.0  18.40 393.39   7.90  21.60
     0.36920   0.00   9.900  0  0.5440  6.5670  87.30  3.6023   4  304.0  18.40 395.69   9.28  23.80
     0.25356   0.00   9.900  0  0.5440  5.7050  77.70  3.9450   4  304.0  18.40 396.42  11.50  16.20
     0.31827   0.00   9.900  0  0.5440  5.9140  83.20  3.9986   4  304.0  18.40 390.70  18.33  17.80
     0.24522   0.00   9.900  0  0.5440  5.7820  71.70  4.0317   4  304.0  18.40 396.90  15.94  19.80
     0.40202   0.00   9.900  0  0.5440  6.3820  67.20  3.5325   4  304.0  18.40 395.21  10.36  23.10
     0.47547   0.00   9.900  0  0.5440  6.1130  58.80  4.0019   4  304.0  18.40 396.23  12.73  21.00
     0.16760   0.00   7.380  0  0.4930  6.4260  52.30  4.5404   5  287.0  19.60 396.90   7.20  23.80
     0.18159   0.00   7.380  0  0.4930  6.3760  54.30  4.5404   5  287.0  19.60 396.90   6.87  23.10
     0.35114   0.00   7.380  0  0.4930  6.0410  49.90  4.7211   5  287.0  19.60 396.90   7.70  20.40
     0.28392   0.00   7.380  0  0.4930  5.7080  74.30  4.7211   5  287.0  19.60 391.13  11.74  18.50
     0.34109   0.00   7.380  0  0.4930  6.4150  40.10  4.7211   5  287.0  19.60 396.90   6.12  25.00
     0.19186   0.00   7.380  0  0.4930  6.4310  14.70  5.4159   5  287.0  19.60 393.68   5.08  24.60
     0.30347   0.00   7.380  0  0.4930  6.3120  28.90  5.4159   5  287.0  19.60 396.90   6.15  23.00
     0.24103   0.00   7.380  0  0.4930  6.0830  43.70  5.4159   5  287.0  19.60 396.90  12.79  22.20
     0.06617   0.00   3.240  0  0.4600  5.8680  25.80  5.2146   4  430.0  16.90 382.44   9.97  19.30
     0.06724   0.00   3.240  0  0.4600  6.3330  17.20  5.2146   4  430.0  16.90 375.21   7.34  22.60
     0.04544   0.00   3.240  0  0.4600  6.1440  32.20  5.8736   4  430.0  16.90 368.57   9.09  19.80
     0.05023  35.00   6.060  0  0.4379  5.7060  28.40  6.6407   1  304.0  16.90 394.02  12.43  17.10
     0.03466  35.00   6.060  0  0.4379  6.0310  23.30  6.6407   1  304.0  16.90 362.25   7.83  19.40
     0.05083   0.00   5.190  0  0.5150  6.3160  38.10  6.4584   5  224.0  20.20 389.71   5.68  22.20
     0.03738   0.00   5.190  0  0.5150  6.3100  38.50  6.4584   5  224.0  20.20 389.40   6.75  20.70
     0.03961   0.00   5.190  0  0.5150  6.0370  34.50  5.9853   5  224.0  20.20 396.90   8.01  21.10
     0.03427   0.00   5.190  0  0.5150  5.8690  46.30  5.2311   5  224.0  20.20 396.90   9.80  19.50
     0.03041   0.00   5.190  0  0.5150  5.8950  59.60  5.6150   5  224.0  20.20 394.81  10.56  18.50
     0.03306   0.00   5.190  0  0.5150  6.0590  37.30  4.8122   5  224.0  20.20 396.14   8.51  20.60
     0.05497   0.00   5.190  0  0.5150  5.9850  45.40  4.8122   5  224.0  20.20 396.90   9.74  19.00
     0.06151   0.00   5.190  0  0.5150  5.9680  58.50  4.8122   5  224.0  20.20 396.90   9.29  18.70
     0.01301  35.00   1.520  0  0.4420  7.2410  49.30  7.0379   1  284.0  15.50 394.74   5.49  32.70
     0.02498   0.00   1.890  0  0.5180  6.5400  59.70  6.2669   1  422.0  15.90 389.96   8.65  16.50
     0.02543  55.00   3.780  0  0.4840  6.6960  56.40  5.7321   5  370.0  17.60 396.90   7.18  23.90
     0.03049  55.00   3.780  0  0.4840  6.8740  28.10  6.4654   5  370.0  17.60 387.97   4.61  31.20
     0.03113   0.00   4.390  0  0.4420  6.0140  48.50  8.0136   3  352.0  18.80 385.64  10.53  17.50
     0.06162   0.00   4.390  0  0.4420  5.8980  52.30  8.0136   3  352.0  18.80 364.61  12.67  17.20
     0.01870  85.00   4.150  0  0.4290  6.5160  27.70  8.5353   4  351.0  17.90 392.43   6.36  23.10
     0.01501  80.00   2.010  0  0.4350  6.6350  29.70  8.3440   4  280.0  17.00 390.94   5.99  24.50
     0.02899  40.00   1.250  0  0.4290  6.9390  34.50  8.7921   1  335.0  19.70 389.85   5.89  26.60
     0.06211  40.00   1.250  0  0.4290  6.4900  44.40  8.7921   1  335.0  19.70 396.90   5.98  22.90
     0.07950  60.00   1.690  0  0.4110  6.5790  35.90 10.7103   4  411.0  18.30 370.78   5.49  24.10
     0.07244  60.00   1.690  0  0.4110  5.8840  18.50 10.7103   4  411.0  18.30 392.33   7.79  18.60
     0.01709  90.00   2.020  0  0.4100  6.7280  36.10 12.1265   5  187.0  17.00 384.46   4.50  30.10
     0.04301  80.00   1.910  0  0.4130  5.6630  21.90 10.5857   4  334.0  22.00 382.80   8.05  18.20
     0.10659  80.00   1.910  0  0.4130  5.9360  19.50 10.5857   4  334.0  22.00 376.04   5.57  20.60
     8.98296   0.00  18.100  1  0.7700  6.2120  97.40  2.1222  24  666.0  20.20 377.73  17.60  17.80
     3.84970   0.00  18.100  1  0.7700  6.3950  91.00  2.5052  24  666.0  20.20 391.34  13.27  21.70
     5.20177   0.00  18.100  1  0.7700  6.1270  83.40  2.7227  24  666.0  20.20 395.43  11.48  22.70
     4.26131   0.00  18.100  0  0.7700  6.1120  81.30  2.5091  24  666.0  20.20 390.74  12.67  22.60
     4.54192   0.00  18.100  0  0.7700  6.3980  88.00  2.5182  24  666.0  20.20 374.56   7.79  25.00
     3.83684   0.00  18.100  0  0.7700  6.2510  91.10  2.2955  24  666.0  20.20 350.65  14.19  19.90
     3.67822   0.00  18.100  0  0.7700  5.3620  96.20  2.1036  24  666.0  20.20 380.79  10.19  20.80
     4.22239   0.00  18.100  1  0.7700  5.8030  89.00  1.9047  24  666.0  20.20 353.04  14.64  16.80
     3.47428   0.00  18.100  1  0.7180  8.7800  82.90  1.9047  24  666.0  20.20 354.55   5.29  21.90
     4.55587   0.00  18.100  0  0.7180  3.5610  87.90  1.6132  24  666.0  20.20 354.70   7.12  27.50
     3.69695   0.00  18.100  0  0.7180  4.9630  91.40  1.7523  24  666.0  20.20 316.03  14.00  21.90
    13.52220   0.00  18.100  0  0.6310  3.8630 100.00  1.5106  24  666.0  20.20 131.42  13.33  23.10
     4.89822   0.00  18.100  0  0.6310  4.9700 100.00  1.3325  24  666.0  20.20 375.52   3.26  50.00
     5.66998   0.00  18.100  1  0.6310  6.6830  96.80  1.3567  24  666.0  20.20 375.33   3.73  50.00
     6.53876   0.00  18.100  1  0.6310  7.0160  97.50  1.2024  24  666.0  20.20 392.05   2.96  50.00
     9.23230   0.00  18.100  0  0.6310  6.2160 100.00  1.1691  24  666.0  20.20 366.15   9.53  50.00
     8.26725   0.00  18.100  1  0.6680  5.8750  89.60  1.1296  24  666.0  20.20 347.88   8.88  50.00
    11.10810   0.00  18.100  0  0.6680  4.9060 100.00  1.1742  24  666.0  20.20 396.90  34.77  13.80
    18.49820   0.00  18.100  0  0.6680  4.1380 100.00  1.1370  24  666.0  20.20 396.90  37.97  13.80
    19.60910   0.00  18.100  0  0.6710  7.3130  97.90  1.3163  24  666.0  20.20 396.90  13.44  15.00
    15.28800   0.00  18.100  0  0.6710  6.6490  93.30  1.3449  24  666.0  20.20 363.02  23.24  13.90
     9.82349   0.00  18.100  0  0.6710  6.7940  98.80  1.3580  24  666.0  20.20 396.90  21.24  13.30
    23.64820   0.00  18.100  0  0.6710  6.3800  96.20  1.3861  24  666.0  20.20 396.90  23.69  13.10
    17.86670   0.00  18.100  0  0.6710  6.2230 100.00  1.3861  24  666.0  20.20 393.74  21.78  10.20
    88.97620   0.00  18.100  0  0.6710  6.9680  91.90  1.4165  24  666.0  20.20 396.90  17.21  10.40
    15.87440   0.00  18.100  0  0.6710  6.5450  99.10  1.5192  24  666.0  20.20 396.90  21.08  10.90
     9.18702   0.00  18.100  0  0.7000  5.5360 100.00  1.5804  24  666.0  20.20 396.90  23.60  11.30
     7.99248   0.00  18.100  0  0.7000  5.5200 100.00  1.5331  24  666.0  20.20 396.90  24.56  12.30
    20.08490   0.00  18.100  0  0.7000  4.3680  91.20  1.4395  24  666.0  20.20 285.83  30.63   8.80
    16.81180   0.00  18.100  0  0.7000  5.2770  98.10  1.4261  24  666.0  20.20 396.90  30.81   7.20
    24.39380   0.00  18.100  0  0.7000  4.6520 100.00  1.4672  24  666.0  20.20 396.90  28.28  10.50
    22.59710   0.00  18.100  0  0.7000  5.0000  89.50  1.5184  24  666.0  20.20 396.90  31.99   7.40
    14.33370   0.00  18.100  0  0.7000  4.8800 100.00  1.5895  24  666.0  20.20 372.92  30.62  10.20
     8.15174   0.00  18.100  0  0.7000  5.3900  98.90  1.7281  24  666.0  20.20 396.90  20.85  11.50
     6.96215   0.00  18.100  0  0.7000  5.7130  97.00  1.9265  24  666.0  20.20 394.43  17.11  15.10
     5.29305   0.00  18.100  0  0.7000  6.0510  82.50  2.1678  24  666.0  20.20 378.38  18.76  23.20
    11.57790   0.00  18.100  0  0.7000  5.0360  97.00  1.7700  24  666.0  20.20 396.90  25.68   9.70
     8.64476   0.00  18.100  0  0.6930  6.1930  92.60  1.7912  24  666.0  20.20 396.90  15.17  13.80
    13.35980   0.00  18.100  0  0.6930  5.8870  94.70  1.7821  24  666.0  20.20 396.90  16.35  12.70
     8.71675   0.00  18.100  0  0.6930  6.4710  98.80  1.7257  24  666.0  20.20 391.98  17.12  13.10
     5.87205   0.00  18.100  0  0.6930  6.4050  96.00  1.6768  24  666.0  20.20 396.90  19.37  12.50
     7.67202   0.00  18.100  0  0.6930  5.7470  98.90  1.6334  24  666.0  20.20 393.10  19.92   8.50
    38.35180   0.00  18.100  0  0.6930  5.4530 100.00  1.4896  24  666.0  20.20 396.90  30.59   5.00
     9.91655   0.00  18.100  0  0.6930  5.8520  77.80  1.5004  24  666.0  20.20 338.16  29.97   6.30
    25.04610   0.00  18.100  0  0.6930  5.9870 100.00  1.5888  24  666.0  20.20 396.90  26.77   5.60
    14.23620   0.00  18.100  0  0.6930  6.3430 100.00  1.5741  24  666.0  20.20 396.90  20.32   7.20
     9.59571   0.00  18.100  0  0.6930  6.4040 100.00  1.6390  24  666.0  20.20 376.11  20.31  12.10
    24.80170   0.00  18.100  0  0.6930  5.3490  96.00  1.7028  24  666.0  20.20 396.90  19.77   8.30
    41.52920   0.00  18.100  0  0.6930  5.5310  85.40  1.6074  24  666.0  20.20 329.46  27.38   8.50
    67.92080   0.00  18.100  0  0.6930  5.6830 100.00  1.4254  24  666.0  20.20 384.97  22.98   5.00
    20.71620   0.00  18.100  0  0.6590  4.1380 100.00  1.1781  24  666.0  20.20 370.22  23.34  11.90
    11.95110   0.00  18.100  0  0.6590  5.6080 100.00  1.2852  24  666.0  20.20 332.09  12.13  27.90
     7.40389   0.00  18.100  0  0.5970  5.6170  97.90  1.4547  24  666.0  20.20 314.64  26.40  17.20
    14.43830   0.00  18.100  0  0.5970  6.8520 100.00  1.4655  24  666.0  20.20 179.36  19.78  27.50
    51.13580   0.00  18.100  0  0.5970  5.7570 100.00  1.4130  24  666.0  20.20   2.60  10.11  15.00
    14.05070   0.00  18.100  0  0.5970  6.6570 100.00  1.5275  24  666.0  20.20  35.05  21.22  17.20
    18.81100   0.00  18.100  0  0.5970  4.6280 100.00  1.5539  24  666.0  20.20  28.79  34.37  17.90
    28.65580   0.00  18.100  0  0.5970  5.1550 100.00  1.5894  24  666.0  20.20 210.97  20.08  16.30
    45.74610   0.00  18.100  0  0.6930  4.5190 100.00  1.6582  24  666.0  20.20  88.27  36.98   7.00
    18.08460   0.00  18.100  0  0.6790  6.4340 100.00  1.8347  24  666.0  20.20  27.25  29.05   7.20
    10.83420   0.00  18.100  0  0.6790  6.7820  90.80  1.8195  24  666.0  20.20  21.57  25.79   7.50
    25.94060   0.00  18.100  0  0.6790  5.3040  89.10  1.6475  24  666.0  20.20 127.36  26.64  10.40
    73.53410   0.00  18.100  0  0.6790  5.9570 100.00  1.8026  24  666.0  20.20  16.45  20.62   8.80
    11.81230   0.00  18.100  0  0.7180  6.8240  76.50  1.7940  24  666.0  20.20  48.45  22.74   8.40
    11.08740   0.00  18.100  0  0.7180  6.4110 100.00  1.8589  24  666.0  20.20 318.75  15.02  16.70
     7.02259   0.00  18.100  0  0.7180  6.0060  95.30  1.8746  24  666.0  20.20 319.98  15.70  14.20
    12.04820   0.00  18.100  0  0.6140  5.6480  87.60  1.9512  24  666.0  20.20 291.55  14.10  20.80
     7.05042   0.00  18.100  0  0.6140  6.1030  85.10  2.0218  24  666.0  20.20   2.52  23.29  13.40
     8.79212   0.00  18.100  0  0.5840  5.5650  70.60  2.0635  24  666.0  20.20   3.65  17.16  11.70
    15.86030   0.00  18.100  0  0.6790  5.8960  95.40  1.9096  24  666.0  20.20   7.68  24.39   8.30
    12.24720   0.00  18.100  0  0.5840  5.8370  59.70  1.9976  24  666.0  20.20  24.65  15.69  10.20
    37.66190   0.00  18.100  0  0.6790  6.2020  78.70  1.8629  24  666.0  20.20  18.82  14.52  10.90
     7.36711   0.00  18.100  0  0.6790  6.1930  78.10  1.9356  24  666.0  20.20  96.73  21.52  11.00
     9.33889   0.00  18.100  0  0.6790  6.3800  95.60  1.9682  24  666.0  20.20  60.72  24.08   9.50
     8.49213   0.00  18.100  0  0.5840  6.3480  86.10  2.0527  24  666.0  20.20  83.45  17.64  14.50
    10.06230   0.00  18.100  0  0.5840  6.8330  94.30  2.0882  24  666.0  20.20  81.33  19.69  14.10
     6.44405   0.00  18.100  0  0.5840  6.4250  74.80  2.2004  24  666.0  20.20  97.95  12.03  16.10
     5.58107   0.00  18.100  0  0.7130  6.4360  87.90  2.3158  24  666.0  20.20 100.19  16.22  14.30
    13.91340   0.00  18.100  0  0.7130  6.2080  95.00  2.2222  24  666.0  20.20 100.63  15.17  11.70
    11.16040   0.00  18.100  0  0.7400  6.6290  94.60  2.1247  24  666.0  20.20 109.85  23.27  13.40
    14.42080   0.00  18.100  0  0.7400  6.4610  93.30  2.0026  24  666.0  20.20  27.49  18.05   9.60
    15.17720   0.00  18.100  0  0.7400  6.1520 100.00  1.9142  24  666.0  20.20   9.32  26.45   8.70
    13.67810   0.00  18.100  0  0.7400  5.9350  87.90  1.8206  24  666.0  20.20  68.95  34.02   8.40
     9.39063   0.00  18.100  0  0.7400  5.6270  93.90  1.8172  24  666.0  20.20 396.90  22.88  12.80
    22.05110   0.00  18.100  0  0.7400  5.8180  92.40  1.8662  24  666.0  20.20 391.45  22.11  10.50
     9.72418   0.00  18.100  0  0.7400  6.4060  97.20  2.0651  24  666.0  20.20 385.96  19.52  17.10
     5.66637   0.00  18.100  0  0.7400  6.2190 100.00  2.0048  24  666.0  20.20 395.69  16.59  18.40
     9.96654   0.00  18.100  0  0.7400  6.4850 100.00  1.9784  24  666.0  20.20 386.73  18.85  15.40
    12.80230   0.00  18.100  0  0.7400  5.8540  96.60  1.8956  24  666.0  20.20 240.52  23.79  10.80
    10.67180   0.00  18.100  0  0.7400  6.4590  94.80  1.9879  24  666.0  20.20  43.06  23.98  11.80
     6.28807   0.00  18.100  0  0.7400  6.3410  96.40  2.0720  24  666.0  20.20 318.01  17.79  14.90
     9.92485   0.00  18.100  0  0.7400  6.2510  96.60  2.1980  24  666.0  20.20 388.52  16.44  12.60
     9.32909   0.00  18.100  0  0.7130  6.1850  98.70  2.2616  24  666.0  20.20 396.90  18.13  14.10
     7.52601   0.00  18.100  0  0.7130  6.4170  98.30  2.1850  24  666.0  20.20 304.21  19.31  13.00
     6.71772   0.00  18.100  0  0.7130  6.7490  92.60  2.3236  24  666.0  20.20   0.32  17.44  13.40
     5.44114   0.00  18.100  0  0.7130  6.6550  98.20  2.3552  24  666.0  20.20 355.29  17.73  15.20
     5.09017   0.00  18.100  0  0.7130  6.2970  91.80  2.3682  24  666.0  20.20 385.09  17.27  16.10
     8.24809   0.00  18.100  0  0.7130  7.3930  99.30  2.4527  24  666.0  20.20 375.87  16.74  17.80
     9.51363   0.00  18.100  0  0.7130  6.7280  94.10  2.4961  24  666.0  20.20   6.68  18.71  14.90
     4.75237   0.00  18.100  0  0.7130  6.5250  86.50  2.4358  24  666.0  20.20  50.92  18.13  14.10
     4.66883   0.00  18.100  0  0.7130  5.9760  87.90  2.5806  24  666.0  20.20  10.48  19.01  12.70
     8.20058   0.00  18.100  0  0.7130  5.9360  80.30  2.7792  24  666.0  20.20   3.50  16.94  13.50
     7.75223   0.00  18.100  0  0.7130  6.3010  83.70  2.7831  24  666.0  20.20 272.21  16.23  14.90
     6.80117   0.00  18.100  0  0.7130  6.0810  84.40  2.7175  24  666.0  20.20 396.90  14.70  20.00
     4.81213   0.00  18.100  0  0.7130  6.7010  90.00  2.5975  24  666.0  20.20 255.23  16.42  16.40
     3.69311   0.00  18.100  0  0.7130  6.3760  88.40  2.5671  24  666.0  20.20 391.43  14.65  17.70
     6.65492   0.00  18.100  0  0.7130  6.3170  83.00  2.7344  24  666.0  20.20 396.90  13.99  19.50
     5.82115   0.00  18.100  0  0.7130  6.5130  89.90  2.8016  24  666.0  20.20 393.82  10.29  20.20
     7.83932   0.00  18.100  0  0.6550  6.2090  65.40  2.9634  24  666.0  20.20 396.90  13.22  21.40
     3.16360   0.00  18.100  0  0.6550  5.7590  48.20  3.0665  24  666.0  20.20 334.40  14.13  19.90
     3.77498   0.00  18.100  0  0.6550  5.9520  84.70  2.8715  24  666.0  20.20  22.01  17.15  19.00
     4.42228   0.00  18.100  0  0.5840  6.0030  94.50  2.5403  24  666.0  20.20 331.29  21.32  19.10
    15.57570   0.00  18.100  0  0.5800  5.9260  71.00  2.9084  24  666.0  20.20 368.74  18.13  19.10
    13.07510   0.00  18.100  0  0.5800  5.7130  56.70  2.8237  24  666.0  20.20 396.90  14.76  20.10
     4.34879   0.00  18.100  0  0.5800  6.1670  84.00  3.0334  24  666.0  20.20 396.90  16.29  19.90
     4.03841   0.00  18.100  0  0.5320  6.2290  90.70  3.0993  24  666.0  20.20 395.33  12.87  19.60
     3.56868   0.00  18.100  0  0.5800  6.4370  75.00  2.8965  24  666.0  20.20 393.37  14.36  23.20
     4.64689   0.00  18.100  0  0.6140  6.9800  67.60  2.5329  24  666.0  20.20 374.68  11.66  29.80
     8.05579   0.00  18.100  0  0.5840  5.4270  95.40  2.4298  24  666.0  20.20 352.58  18.14  13.80
     6.39312   0.00  18.100  0  0.5840  6.1620  97.40  2.2060  24  666.0  20.20 302.76  24.10  13.30
     4.87141   0.00  18.100  0  0.6140  6.4840  93.60  2.3053  24  666.0  20.20 396.21  18.68  16.70
    15.02340   0.00  18.100  0  0.6140  5.3040  97.30  2.1007  24  666.0  20.20 349.48  24.91  12.00
    10.23300   0.00  18.100  0  0.6140  6.1850  96.70  2.1705  24  666.0  20.20 379.70  18.03  14.60
    14.33370   0.00  18.100  0  0.6140  6.2290  88.00  1.9512  24  666.0  20.20 383.32  13.11  21.40
     5.82401   0.00  18.100  0  0.5320  6.2420  64.70  3.4242  24  666.0  20.20 396.90  10.74  23.00
     5.70818   0.00  18.100  0  0.5320  6.7500  74.90  3.3317  24  666.0  20.20 393.07   7.74  23.70
     5.73116   0.00  18.100  0  0.5320  7.0610  77.00  3.4106  24  666.0  20.20 395.28   7.01  25.00
     2.81838   0.00  18.100  0  0.5320  5.7620  40.30  4.0983  24  666.0  20.20 392.92  10.42  21.80
     2.37857   0.00  18.100  0  0.5830  5.8710  41.90  3.7240  24  666.0  20.20 370.73  13.34  20.60
     3.67367   0.00  18.100  0  0.5830  6.3120  51.90  3.9917  24  666.0  20.20 388.62  10.58  21.20
     5.69175   0.00  18.100  0  0.5830  6.1140  79.80  3.5459  24  666.0  20.20 392.68  14.98  19.10
     4.83567   0.00  18.100  0  0.5830  5.9050  53.20  3.1523  24  666.0  20.20 388.22  11.45  20.60
     0.15086   0.00  27.740  0  0.6090  5.4540  92.70  1.8209   4  711.0  20.10 395.09  18.06  15.20
     0.18337   0.00  27.740  0  0.6090  5.4140  98.30  1.7554   4  711.0  20.10 344.05  23.97   7.00
     0.20746   0.00  27.740  0  0.6090  5.0930  98.00  1.8226   4  711.0  20.10 318.43  29.68   8.10
     0.10574   0.00  27.740  0  0.6090  5.9830  98.80  1.8681   4  711.0  20.10 390.11  18.07  13.60
     0.11132   0.00  27.740  0  0.6090  5.9830  83.50  2.1099   4  711.0  20.10 396.90  13.35  20.10
     0.17331   0.00   9.690  0  0.5850  5.7070  54.00  2.3817   6  391.0  19.20 396.90  12.01  21.80
     0.27957   0.00   9.690  0  0.5850  5.9260  42.60  2.3817   6  391.0  19.20 396.90  13.59  24.50
     0.17899   0.00   9.690  0  0.5850  5.6700  28.80  2.7986   6  391.0  19.20 393.29  17.60  23.10
     0.28960   0.00   9.690  0  0.5850  5.3900  72.90  2.7986   6  391.0  19.20 396.90  21.14  19.70
     0.26838   0.00   9.690  0  0.5850  5.7940  70.60  2.8927   6  391.0  19.20 396.90  14.10  18.30
     0.23912   0.00   9.690  0  0.5850  6.0190  65.30  2.4091   6  391.0  19.20 396.90  12.92  21.20
     0.17783   0.00   9.690  0  0.5850  5.5690  73.50  2.3999   6  391.0  19.20 395.77  15.10  17.50
     0.22438   0.00   9.690  0  0.5850  6.0270  79.70  2.4982   6  391.0  19.20 396.90  14.33  16.80
     0.06263   0.00  11.930  0  0.5730  6.5930  69.10  2.4786   1  273.0  21.00 391.99   9.67  22.40
     0.04527   0.00  11.930  0  0.5730  6.1200  76.70  2.2875   1  273.0  21.00 396.90   9.08  20.60
     0.06076   0.00  11.930  0  0.5730  6.9760  91.00  2.1675   1  273.0  21.00 396.90   5.64  23.90
     0.10959   0.00  11.930  0  0.5730  6.7940  89.30  2.3889   1  273.0  21.00 393.45   6.48  22.00
     0.04741   0.00  11.930  0  0.5730  6.0300  80.80  2.5050   1  273.0  21.00 396.90   7.88  11.90
    

      

    二,开发基线神经网络模型

      在本节中,我们将为回归问题创建基线神经网络模型。

    1,导入所需的库

      让我们从包含本文所需的所有函数和对象开始。

    import numpy
    import pandas
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.wrappers.scikit_learn import KerasRegressor
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    

      

    2,加载数据集

      我们现在可以从本地目录中的文件加载数据集。

      事实上,数据集在UCI机器学习库中不是CSV格式,而是用空格分隔属性。我们可以使用pandas库轻松加载它。然后我们可以分割输入(X)和输出(Y)属性,以便使用Keras和scikit-learn更容易建模。

    # load dataset
    dataframe = pandas.read_csv("housing.csv", delim_whitespace=True, header=None)
    dataset = dataframe.values
    # split into input (X) and output (Y) variables
    X = dataset[:,0:13]
    Y = dataset[:,13]
    

      

      当然了,我们可以直接导入sklearn中的Boston数据集

    boston = datasets.load_Boston() # 导入数据集
    X = boston.data # 获得其特征向量
    y = boston.target # 获得样本label
    

      

    3,创建评估的神经网络模型 

      我们可以使用Keras库提供的方便的包装器对象创建Keras模型并使用scikit-learn来评估它们。这是可取的,因为scikit-learn在评估模型方面表现出色,并且允许我们使用强大的数据准备和模型评估方案,只需很少的代码。

      Keras包装器需要一个函数作为参数。我们必须定义的这个函数负责创建要评估的神经网络模型。

      下面我们定义用于创建要评估的基线模型的函数。这是一个简单的模型,它有一个完全连接的隐藏层,与输入属性具有相同数量的神经元(13)。网络使用诸如隐藏层的整流器激活功能之类的良好实践。没有激活函数用于输出层,因为它是一个回归问题,我们有兴趣直接预测数值而不进行转换。

      使用有效的ADAM优化算法并且优化均方误差损失函数。这将与我们用于评估模型性能的指标相同。这是一个理想的指标,因为通过取平方根给出了我们可以在问题的上下文中直接理解的错误值(数千美元)。

    # define base model
    def baseline_model():
    	# create model
    	model = Sequential()
    	model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu'))
    	model.add(Dense(1, kernel_initializer='normal'))
    	# Compile model
    	model.compile(loss='mean_squared_error', optimizer='adam')
    	return model
    

      

      在 scikit-learn 库中用作回归计算估计器的 Keras 封装对象名为 KerasRegressor。我们创建一个 KerasRegressor对象实例,并将创建神经网络模型的函数名称,以及一些稍后传递给模型 fit( ) 函数的参数,比如最大训练次数,每批数据的大小等。两者都被设置为合理的默认值。

      对于sklearn不了解的可以参考小编的博客:Python机器学习笔记:sklearn库的学习

      我们还使用常量随机种子初始化随机数生成器,我们将为本教程中评估的每个模型重复该过程(相同的随机数)。这是为了确保我们始终如一的比较模型。

    # fix random seed for reproducibility
    seed = 7
    numpy.random.seed(seed)
    # evaluate model with standardized dataset
    estimator = KerasRegressor(build_fn=baseline_model, epochs=100, batch_size=5, verbose=0)
    

      最后一步是评估此基线模型。我们将使用10倍交叉验证来评估模型。

    4,评估所创建的神经网络模型

    kfold = KFold(n_splits=10, random_state=seed)
    results = cross_val_score(estimator, X, Y, cv=kfold)
    print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))
    

      运行此代码可以估算出模型在看不见的数据问题上的表现。结果报告均方误差,包括交叉验证评估的所有10倍的平均值和标准偏差(平均方差)

    Baseline: 31.64 (26.82) MSE
    

      

    5(补充):交叉验证的学习

      1,导入k折交叉验证模块

    from sklearn.cross_validation import cross_val_score
    

      2,交叉验证的思想

      把某种意义下将原始数据(dataset)进行分组,一部分作为训练集(train set),另一部分作为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来作为评价分类器的性能指标。

      3,为什么使用交叉验证法

    • 交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程序熵减少过拟合。
    • 交叉验证还可以从有限的数据中获取尽可能多的有效信息

      4,主要有哪些方法

    1,留出法(holdout cross validation)

      在机器学习任务中,拿到数据后,我们首先会将原始数据集分为三部分:训练集,验证集和测试集。

      训练集用于训练模型,验证集用于模型的参数选择配置,测试集对于模型来说是未知数据,用于评估模型的泛化能力。

      这个方法操作简单,只需要随机将原始数据分为三组即可。

      不过如果只做一次分割,它对训练集,验证集和测试机的样本比例,还有分割后数据的分布是否和原始数据集的分布相同等因素比较敏感,不同的划分会得到不同的最优模型,,而且分成三个集合后,用于训练的数据更少了。于是又了2.k折交叉验证(k-fold cross validation).

      下面例子,一共有150条数据:

    >>> import numpy as np
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn import datasets
    >>> from sklearn import svm
    
    >>> iris = datasets.load_iris()
    >>> iris.data.shape, iris.target.shape
    ((150, 4), (150,))
    

      用train_test_split来随机划分数据集,其中40%用于测试集,有60条数据,60%为训练集,有90条数据:

    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     iris.data, iris.target, test_size=0.4, random_state=0)
    
    >>> X_train.shape, y_train.shape
    ((90, 4), (90,))
    >>> X_test.shape, y_test.shape
    ((60, 4), (60,))
    

      用train来训练,用test来评价模型的分数。

    >>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
    >>> clf.score(X_test, y_test)                           
    0.96...
    

      

    2,2. k 折交叉验证(k-fold cross validation)

       K折交叉验证通过对k个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感。

    • 第一步,不重复抽样将原始数据随机分为 k 份。
    • 第二步,每一次挑选其中 1 份作为测试集,剩余 k-1 份作为训练集用于模型训练。
    • 第三步,重复第二步 k 次,这样每个子集都有一次机会作为测试集,其余机会作为训练集。
    • 在每个训练集上训练后得到一个模型,
    • 用这个模型在相应的测试集上测试,计算并保存模型的评估指标,
    • 第四步,计算 k 组测试结果的平均值作为模型精度的估计,并作为当前 k 折交叉验证下模型的性能指标。

    K一般取10,数据量小的是,k可以设大一点,这样训练集占整体比例就比较大,不过同时训练的模型个数也增多。数据量大的时候,k可以设置小一点。当k=m的时候,即样本总数,出现了留一法。

      举例,这里直接调用了cross_val_score,这里用了5折交叉验证

    >>> from sklearn.model_selection import cross_val_score
    >>> clf = svm.SVC(kernel='linear', C=1)
    >>> scores = cross_val_score(clf, iris.data, iris.target, cv=5)
    >>> scores                                              
    array([ 0.96...,  1.  ...,  0.96...,  0.96...,  1.        ])
    

      得到最后平均分数为0.98,以及它的95%置信区间:

    >>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
    Accuracy: 0.98 (+/- 0.03)
    

      我们可以直接看一下K-Fold是怎么样划分数据的:X有四个数据,把它分成2折,结构中最后一个集合是测试集,前面的是训练集,每一行为1折:

    >>> import numpy as np
    >>> from sklearn.model_selection import KFold
    
    >>> X = ["a", "b", "c", "d"]
    >>> kf = KFold(n_splits=2)
    >>> for train, test in kf.split(X):
    ...     print("%s %s" % (train, test))
    [2 3] [0 1]
    [0 1] [2 3]
    

      同样的数据X,我们来看LeaveOneOut后是什么样子,那就是把它分成4折,结果中最后一个集合是测试集,只有一个元素,前面的是训练集,每一行为1折:

    >>> from sklearn.model_selection import LeaveOneOut
    
    >>> X = [1, 2, 3, 4]
    >>> loo = LeaveOneOut()
    >>> for train, test in loo.split(X):
    ...     print("%s %s" % (train, test))
    [1 2 3] [0]
    [0 2 3] [1]
    [0 1 3] [2]
    [0 1 2] [3]
    

      

    3,留一法(Leave one out cross validation)

      每次的测试集都只有一个样本,要进行m次训练和预测,这个方法用于训练的数据只比整体数据集少一个样本,因此最接近原始样本的分布。但是训练复杂度增加了,因为模型的数量与原始数据样本数量相同。一般在数据缺少时使用。

    此外:

    • 多次 k 折交叉验证再求均值,例如:10 次 10 折交叉验证,以求更精确一点。
    • 划分时有多种方法,例如对非平衡数据可以用分层采样,就是在每一份子集中都保持和原始数据集相同的类别比例。
    • 模型训练过程的所有步骤,包括模型选择,特征选择等都是在单个折叠 fold 中独立执行的。

    4,Bootstrapping

      通过自助采样法,即在含有 m 个样本的数据集中,每次随机挑选一个样本,再放回到数据集中,再随机挑选一个样本,这样有放回地进行抽样 m 次,组成了新的数据集作为训练集。

      这里会有重复多次的样本,也会有一次都没有出现的样本,原数据集中大概有 36.8% 的样本不会出现在新组数据集中。

      优点是训练集的样本总数和原数据集一样都是 m,并且仍有约 1/3 的数据不被训练而可以作为测试集。
      缺点是这样产生的训练集的数据分布和原数据集的不一样了,会引入估计偏差。
      (此种方法不是很常用,除非数据量真的很少)

     

    三,建模标准化数据集

      波士顿房价数据集的一个重要问题是输入的特征对于房价的影响各不相同。

      在使用神经网络模型对数据进行建模之前,准备好所要使用数据总是一种好的做法。

      继续上述基线模型,我们可以使用输入数据集的标准化版本重新评估相同的模型。

      我们可以使用scikit-learn的Pipeline框架在模型评估过程中,在交叉验证的每个折叠内执行标准化。这确保了每个测试集交叉验证折叠中没有数据泄漏到训练数据中。

      下面的代码创建了一个scikit-learn Pipeline,它首先标准化数据集,然后创建和评估基线神经网络模型。

    # evaluate model with standardized dataset
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standardize', StandardScaler()))
    estimators.append(('mlp', KerasRegressor(build_fn=baseline_model, epochs=50, batch_size=5, verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10, random_state=seed)
    results = cross_val_score(pipeline, X, Y, cv=kfold)
    print("Standardized: %.2f (%.2f) MSE" % (results.mean(), results.std()))
    

      运行该示例提供了比没有标准化数据的基线模型更好的性能,从而减少了错误。

    Standardized: 29.54 (27.87) MSE
    

      此部分的进一步扩展将类似地对输出变量应用重新缩放,例如将其归一化到0-1的范围,并在输出层上使用Sigmoid或类似的激活函数,以将输出预测缩小到相同的范围。

    四,调整神经网络拓扑

      对于神经网络模型而言,可以优化的方面有很多。

      也许效果最明显的优化之处是网络本身的结构,包括层数和每层神经元的数量。

      在本节中,我们将评估另外两种网络拓扑,以进一步提高模型的性能。这两个结构分别是层数更深和层度更宽的网络拓扑结构。

    4.1 评估层数更深的网络拓扑

      提高神经网络性能的一种方法是添加更多层。这可能允许模型提取并重新组合数据中嵌入的高阶特征。

      在本节中,我们将评估向模型添加一个隐藏层的效果。这就像定义一个新函数一样简单,这个函数将创建从上面的基线模型复制的更深层次的模型。然后我们可以在第一个隐藏层之后插入一个新行。在这种情况下,神经元的数量约为一半(6个)。

    # define the model
    def larger_model():
    	# create model
    	model = Sequential()
    	model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu'))
    	model.add(Dense(6, kernel_initializer='normal', activation='relu'))
    	model.add(Dense(1, kernel_initializer='normal'))
    	# Compile model
    	model.compile(loss='mean_squared_error', optimizer='adam')
    	return model
    

      我们的网络拓扑现在看起来像:

    13 inputs -> [13 -> 6] -> 1 output
    

      我们可以采用与上述相同的方式评估此网络拓扑,同时还使用上面显示的数据集的标准化来提高性能。

    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standardize', StandardScaler()))
    estimators.append(('mlp', KerasRegressor(build_fn=larger_model, epochs=50, batch_size=5, verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10, random_state=seed)
    results = cross_val_score(pipeline, X, Y, cv=kfold)
    print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std()))
    

      运行此模型确定表明性能从28降到24,000平方美元的进一步改善。

    Larger: 22.83 (25.33) MSE
    

      

    4.2 评估层宽更宽的网络拓扑

      增加模型的表示能力的另一种方法是创建更广泛的网络。

      在本节中,我们将评估保持浅层网络架构的效果,并使一个隐藏层中的神经元数量几乎翻倍。

      同样,我们需要做的就是定义一个创建神经网络模型的新函数。在这里,与13到20的基线模型相比,我们增加了隐藏层中神经元的数量。

    # define wider model
    def wider_model():
    	# create model
    	model = Sequential()
    	model.add(Dense(20, input_dim=13, kernel_initializer='normal', activation='relu'))
    	model.add(Dense(1, kernel_initializer='normal'))
    	# Compile model
    	model.compile(loss='mean_squared_error', optimizer='adam')
    	return model
    

      我们可以使用与上面相同的方案评估更广泛的网络拓扑:

    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standardize', StandardScaler()))
    estimators.append(('mlp', KerasRegressor(build_fn=wider_model, epochs=100, batch_size=5, verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10, random_state=seed)
    results = cross_val_score(pipeline, X, Y, cv=kfold)
    print("Wider: %.2f (%.2f) MSE" % (results.mean(), results.std()))
    

      建立模型的确看到误差进一步下降到大约2.1万平方美元,对于这个问题,这个不是一个糟糕的结果。

    Wider: 21.64 (23.75) MSE
    

      很难想象更广泛的网络在这个问题上会胜过更深层次的网络。结果证明了在开发神经网络模型时经验测试的重要性。

       

    五,完整代码的总结

    1,代码

    import numpy
    import pandas
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.wrappers.scikit_learn import KerasRegressor
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    
    # 导入数据
    filename = 'housing.csv'
    dataframe = pandas.read_csv(filename,delim_whitespace=True,header=None)
    dataset = dataframe.values
    # print(dataset)
    
    # 把数据分为输入和输出两个变量
    X = dataset[:,0:13]
    Y = dataset[:,13]
    # print(len(Y))
    
    # 定义个基类模型
    def baseline_model():
        # 创建模型,与输入属性具有相同的神经元13
        model = Sequential()
        model.add(Dense(13,input_dim=13,kernel_initializer='normal',activation='relu'))
        model.add(Dense(1,kernel_initializer='normal'))
        # Compile model
        model.compile(loss='mean_squared_error',optimizer='adam')
        return model
    
    # 固定随机种子的重现性
    seed = 7
    numpy.random.seed(seed)
    # 使用标准化数据集评估模型
    estimator = KerasRegressor(build_fn=baseline_model,epochs=100,batch_size=5,verbose=0)
    # 评估此基类模型,我们使用10倍交叉验证来评估模型
    kfold = KFold(n_splits=10,random_state=seed)
    results = cross_val_score(estimator,X,Y,cv=kfold)
    print("Results:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    
    # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standaedize',StandardScaler()))
    estimators.append(('mlp',KerasRegressor(build_fn=baseline_model,epochs=50,batch_size=5,verbose=0)))
    pipeline = Pipeline(estimators)
    # 评估所创建的神经网络模型
    kfold = KFold(n_splits=10,random_state=seed)
    results = cross_val_score(pipeline,X,Y,cv=kfold)
    print("Standardized:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    
    
    # 针对神经网络模型进行优化
    # 提高神经网络性能的一种方法是添加更多层,这可能允许模型提取并重新组合数据中嵌入的高阶特征
    def larger_model():
        # 创建模型
        model = Sequential()
        model.add(Dense(13,input_dim=13,kernel_initializer='normal',activation='relu'))
        model.add(Dense(6,kernel_initializer='normal',activation='relu'))
        model.add(Dense(1,kernel_initializer='normal'))
        # 编译模型
        model.compile(loss='mean_squared_error',optimizer='adam')
        return model
    
    # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standaedize',StandardScaler()))
    estimators.append(('mlp',KerasRegressor(build_fn=larger_model,epochs=50,batch_size=5,verbose=0)))
    pipeline = Pipeline(estimators)
    # 评估所创建的神经网络模型
    kfold = KFold(n_splits=10,random_state=seed)
    results = cross_val_score(pipeline,X,Y,cv=kfold)
    print("Larger:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    
    
    # 针对神经网络模型进行优化,评估更广泛的模型
    # 提高神经网络性能的一种方法是使其更广泛,这可能允许模型提取并重新组合数据中嵌入的高阶特征
    
    def wider_model():
        # 创建模型
        model = Sequential()
        model.add(Dense(20, input_dim=13, kernel_initializer='normal', activation='relu'))
        model.add(Dense(1, kernel_initializer='normal'))
        # 编译模型
        model.compile(loss='mean_squared_error', optimizer='adam')
        # predict model
        model.fit(X,Y,epochs=50,batch_size=5)
        predict = model.predict(X)
        # print(predict)
        return model
    
    # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standaedize',StandardScaler()))
    estimators.append(('mlp',KerasRegressor(build_fn=wider_model,epochs=100,batch_size=5,verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10,random_state=seed)
    results = cross_val_score(pipeline,X,Y,cv=kfold)
    print("Wider:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    

      

    代码2:

    import numpy
    import pandas
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.wrappers.scikit_learn import KerasRegressor
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import KFold
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    import pandas as pd
    
    # 导入数据
    filename = 'housing.csv'
    dataframe = pandas.read_csv(filename,delim_whitespace=True,header=None)
    dataset = dataframe.values
    # print(dataset)
    
    # 把数据分为输入和输出两个变量
    X = dataset[:,0:13]
    Y = dataset[:,13]
    # print(len(Y))
    seed = 7
    # # 定义基类模型
    # def baseline_model():
    #     # 创建模型,与输入属性具有相同的神经元13
    #     model = Sequential()
    #     model.add(Dense(13,input_dim=13,kernel_initializer='normal',activation='relu'))
    #     model.add(Dense(1,kernel_initializer='normal'))
    #     # Compile model,使用高效的ADAM优化算法以及优化的最小均方误差损失函数
    #     model.compile(loss='mean_squared_error',optimizer='adam')
    #     return model
    #
    # # 固定随机种子的重现性
    # seed = 7
    # numpy.random.seed(seed)
    # # 使用标准化数据集评估模型
    # estimator = KerasRegressor(build_fn=baseline_model,epochs=100,batch_size=5,verbose=0)
    # # 评估此基类模型,我们使用10倍交叉验证来评估模型
    # kfold = KFold(n_splits=10,random_state=seed)
    # results = cross_val_score(estimator,X,Y,cv=kfold)
    # print("Results:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    #
    # # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    # numpy.random.seed(seed)
    # estimators = []
    # estimators.append(('standaedize',StandardScaler()))
    # estimators.append(('mlp',KerasRegressor(build_fn=baseline_model,epochs=50,batch_size=5,verbose=0)))
    # pipeline = Pipeline(estimators)
    # # 评估所创建的神经网络模型
    # kfold = KFold(n_splits=10,random_state=seed)
    # results = cross_val_score(pipeline,X,Y,cv=kfold)
    # print("Standardized:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    #
    #
    # # 针对神经网络模型进行优化
    # # 提高神经网络性能的一种方法是添加更多层,这可能允许模型提取并重新组合数据中嵌入的高阶特征
    # def larger_model():
    #     # 创建模型
    #     model = Sequential()
    #     model.add(Dense(13,input_dim=13,kernel_initializer='normal',activation='relu'))
    #     model.add(Dense(6,kernel_initializer='normal',activation='relu'))
    #     model.add(Dense(1,kernel_initializer='normal'))
    #     # 编译模型
    #     model.compile(loss='mean_squared_error',optimizer='adam')
    #     return model
    #
    # # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    # numpy.random.seed(seed)
    # estimators = []
    # estimators.append(('standaedize',StandardScaler()))
    # estimators.append(('mlp',KerasRegressor(build_fn=larger_model,epochs=50,batch_size=5,verbose=0)))
    # pipeline = Pipeline(estimators)
    # # 评估所创建的神经网络模型
    # kfold = KFold(n_splits=10,random_state=seed)
    # results = cross_val_score(pipeline,X,Y,cv=kfold)
    # print("Larger:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    #
    
    # 针对神经网络模型进行优化,评估更广泛的模型
    # 提高神经网络性能的一种方法是使其更广泛,这可能允许模型提取并重新组合数据中嵌入的高阶特征
    
    def wider_model():
        # 创建模型
        model = Sequential()
        model.add(Dense(20, input_dim=13, kernel_initializer='normal', activation='relu'))
        model.add(Dense(1, kernel_initializer='normal'))
        # 编译模型
        model.compile(loss='mean_squared_error', optimizer='adam')
        # predict model
        model.fit(X,Y,epochs=50,batch_size=5)
        predict = model.predict(X)
        # print(predict)
        submit_txt = pd.DataFrame(predict)
        print(submit_txt)
        submit_txt.to_csv("predict_housing1.csv", sep=',', header=False, index=False)
        return model
    
    # 使用scikit-learn Pipeline 首先标准化数据集,然后创建和评估基线神经网络模型
    numpy.random.seed(seed)
    estimators = []
    estimators.append(('standaedize',StandardScaler()))
    estimators.append(('mlp',KerasRegressor(build_fn=wider_model,epochs=100,batch_size=5,verbose=0)))
    pipeline = Pipeline(estimators)
    kfold = KFold(n_splits=10,random_state=seed)
    results = cross_val_score(pipeline,X,Y,cv=kfold)
    print("Wider:%.2f(%.2f)MSE"%(results.mean(),results.std()))
    

      

    2,结果

    Results:-32.93(23.37)MSE
    Standardized:-29.54(27.53)MSE
    Larger:-23.31(27.07)MSE
    Wider:-21.76(26.31)MSE
    
    Process finished with exit code 0
    

      

    结果2:

    Using TensorFlow backend.
    Epoch 1/50
    
      5/506 [..............................] - ETA: 15s - loss: 805.4844
    435/506 [========================>.....] - ETA: 0s - loss: 250.8078 
    506/506 [==============================] - 0s 432us/step - loss: 228.3296
    Epoch 2/50
    
      5/506 [..............................] - ETA: 0s - loss: 61.6121
    455/506 [=========================>....] - ETA: 0s - loss: 80.5485
    506/506 [==============================] - 0s 127us/step - loss: 79.0767
    Epoch 3/50
    
      5/506 [..............................] - ETA: 0s - loss: 164.0555
    485/506 [===========================>..] - ETA: 0s - loss: 69.5207 
    506/506 [==============================] - 0s 127us/step - loss: 68.9874
    Epoch 4/50
    
      5/506 [..............................] - ETA: 0s - loss: 45.3651
    490/506 [============================>.] - ETA: 0s - loss: 63.1090
    506/506 [==============================] - 0s 123us/step - loss: 63.5065
    Epoch 5/50
    
      5/506 [..............................] - ETA: 0s - loss: 31.9817
    495/506 [============================>.] - ETA: 0s - loss: 60.3168
    506/506 [==============================] - 0s 123us/step - loss: 59.6500
    Epoch 6/50
    
      5/506 [..............................] - ETA: 0s - loss: 75.1090
    500/506 [============================>.] - ETA: 0s - loss: 57.5022
    506/506 [==============================] - 0s 123us/step - loss: 57.5369
    Epoch 7/50
    
      5/506 [..............................] - ETA: 0s - loss: 20.0596
    506/506 [==============================] - 0s 123us/step - loss: 55.5891
    Epoch 8/50
    
      5/506 [..............................] - ETA: 0s - loss: 67.5474
    480/506 [===========================>..] - ETA: 0s - loss: 53.3222
    506/506 [==============================] - 0s 125us/step - loss: 54.4315
    Epoch 9/50
    
      5/506 [..............................] - ETA: 0s - loss: 12.8274
    485/506 [===========================>..] - ETA: 0s - loss: 52.5087
    506/506 [==============================] - 0s 123us/step - loss: 51.9669
    Epoch 10/50
    
      5/506 [..............................] - ETA: 0s - loss: 44.8263
    495/506 [============================>.] - ETA: 0s - loss: 50.9085
    506/506 [==============================] - 0s 123us/step - loss: 50.2104
    Epoch 11/50
    
      5/506 [..............................] - ETA: 0s - loss: 10.7946
    505/506 [============================>.] - ETA: 0s - loss: 48.8362
    506/506 [==============================] - 0s 123us/step - loss: 48.7627
    Epoch 12/50
    
      5/506 [..............................] - ETA: 0s - loss: 29.8260
    505/506 [============================>.] - ETA: 0s - loss: 47.2329
    506/506 [==============================] - 0s 123us/step - loss: 47.1404
    Epoch 13/50
    
      5/506 [..............................] - ETA: 0s - loss: 15.9536
    506/506 [==============================] - 0s 92us/step - loss: 43.1233
    Epoch 14/50
    
      5/506 [..............................] - ETA: 1s - loss: 36.2984
    506/506 [==============================] - 0s 125us/step - loss: 43.6554
    Epoch 15/50
    
      5/506 [..............................] - ETA: 0s - loss: 11.6092
    415/506 [=======================>......] - ETA: 0s - loss: 40.4716
    506/506 [==============================] - 0s 123us/step - loss: 42.6683
    Epoch 16/50
    
      5/506 [..............................] - ETA: 0s - loss: 2.9016
    425/506 [========================>.....] - ETA: 0s - loss: 38.2600
    506/506 [==============================] - 0s 123us/step - loss: 39.1469
    Epoch 17/50
    
      5/506 [..............................] - ETA: 0s - loss: 26.3887
    400/506 [======================>.......] - ETA: 0s - loss: 39.2786
    506/506 [==============================] - 0s 123us/step - loss: 38.7250
    Epoch 18/50
    
      5/506 [..............................] - ETA: 1s - loss: 10.9436
    490/506 [============================>.] - ETA: 0s - loss: 35.2829
    506/506 [==============================] - 0s 154us/step - loss: 36.2559
    Epoch 19/50
    
      5/506 [..............................] - ETA: 0s - loss: 110.4335
    420/506 [=======================>......] - ETA: 0s - loss: 38.3718 
    506/506 [==============================] - 0s 123us/step - loss: 37.2191
    Epoch 20/50
    
      5/506 [..............................] - ETA: 0s - loss: 4.4877
    340/506 [===================>..........] - ETA: 0s - loss: 36.5170
    506/506 [==============================] - 0s 154us/step - loss: 34.2345
    Epoch 21/50
    
      5/506 [..............................] - ETA: 0s - loss: 3.0911
    335/506 [==================>...........] - ETA: 0s - loss: 27.8048
    506/506 [==============================] - 0s 154us/step - loss: 34.6101
    Epoch 22/50
    
      5/506 [..............................] - ETA: 0s - loss: 15.4901
    400/506 [======================>.......] - ETA: 0s - loss: 35.1135
    506/506 [==============================] - 0s 154us/step - loss: 36.9043
    Epoch 23/50
    
      5/506 [..............................] - ETA: 0s - loss: 21.1735
    455/506 [=========================>....] - ETA: 0s - loss: 33.6868
    506/506 [==============================] - 0s 123us/step - loss: 34.8258
    Epoch 24/50
    
      5/506 [..............................] - ETA: 0s - loss: 85.7751
    415/506 [=======================>......] - ETA: 0s - loss: 35.5314
    506/506 [==============================] - 0s 123us/step - loss: 34.5349
    Epoch 25/50
    
      5/506 [..............................] - ETA: 0s - loss: 17.5053
    385/506 [=====================>........] - ETA: 0s - loss: 32.1707
    506/506 [==============================] - 0s 154us/step - loss: 33.2426
    Epoch 26/50
    
      5/506 [..............................] - ETA: 0s - loss: 15.1037
    505/506 [============================>.] - ETA: 0s - loss: 32.9444
    506/506 [==============================] - 0s 123us/step - loss: 32.9438
    Epoch 27/50
    
      5/506 [..............................] - ETA: 0s - loss: 9.0323
    506/506 [==============================] - 0s 123us/step - loss: 33.0248
    Epoch 28/50
    
      5/506 [..............................] - ETA: 0s - loss: 72.4469
    506/506 [==============================] - 0s 92us/step - loss: 31.2194
    Epoch 29/50
    
      5/506 [..............................] - ETA: 0s - loss: 19.6237
    395/506 [======================>.......] - ETA: 0s - loss: 31.5439
    506/506 [==============================] - 0s 123us/step - loss: 30.4992
    Epoch 30/50
    
      5/506 [..............................] - ETA: 0s - loss: 65.1235
    400/506 [======================>.......] - ETA: 0s - loss: 31.3186
    506/506 [==============================] - 0s 123us/step - loss: 30.5432
    Epoch 31/50
    
      5/506 [..............................] - ETA: 0s - loss: 8.7552
    395/506 [======================>.......] - ETA: 0s - loss: 27.7944
    506/506 [==============================] - 0s 154us/step - loss: 29.7216
    Epoch 32/50
    
      5/506 [..............................] - ETA: 0s - loss: 22.3568
    505/506 [============================>.] - ETA: 0s - loss: 29.3601
    506/506 [==============================] - 0s 123us/step - loss: 29.3569
    Epoch 33/50
    
      5/506 [..............................] - ETA: 0s - loss: 13.9683
    506/506 [==============================] - 0s 123us/step - loss: 29.7533
    Epoch 34/50
    
      5/506 [..............................] - ETA: 0s - loss: 11.6751
    506/506 [==============================] - 0s 123us/step - loss: 29.6476
    Epoch 35/50
    
      5/506 [..............................] - ETA: 0s - loss: 2.7265
    506/506 [==============================] - 0s 92us/step - loss: 27.9348
    Epoch 36/50
    
      5/506 [..............................] - ETA: 1s - loss: 39.1157
    506/506 [==============================] - 0s 123us/step - loss: 27.7667
    Epoch 37/50
    
      5/506 [..............................] - ETA: 0s - loss: 11.3104
    395/506 [======================>.......] - ETA: 0s - loss: 28.7139
    506/506 [==============================] - 0s 123us/step - loss: 26.7338
    Epoch 38/50
    
      5/506 [..............................] - ETA: 0s - loss: 33.0695
    390/506 [======================>.......] - ETA: 0s - loss: 29.3709
    506/506 [==============================] - 0s 123us/step - loss: 26.6316
    Epoch 39/50
    
      5/506 [..............................] - ETA: 1s - loss: 8.1361
    506/506 [==============================] - 0s 123us/step - loss: 26.4067
    Epoch 40/50
    
      5/506 [..............................] - ETA: 1s - loss: 13.7220
    506/506 [==============================] - 0s 123us/step - loss: 25.9756
    Epoch 41/50
    
      5/506 [..............................] - ETA: 0s - loss: 36.6162
    405/506 [=======================>......] - ETA: 0s - loss: 27.9074
    506/506 [==============================] - 0s 123us/step - loss: 27.2547
    Epoch 42/50
    
      5/506 [..............................] - ETA: 0s - loss: 44.2660
    415/506 [=======================>......] - ETA: 0s - loss: 24.8610
    506/506 [==============================] - 0s 123us/step - loss: 25.4775
    Epoch 43/50
    
      5/506 [..............................] - ETA: 0s - loss: 30.5703
    425/506 [========================>.....] - ETA: 0s - loss: 25.0591
    506/506 [==============================] - 0s 123us/step - loss: 26.3528
    Epoch 44/50
    
      5/506 [..............................] - ETA: 0s - loss: 15.4020
    435/506 [========================>.....] - ETA: 0s - loss: 26.9322
    506/506 [==============================] - 0s 123us/step - loss: 25.1340
    Epoch 45/50
    
      5/506 [..............................] - ETA: 0s - loss: 11.2487
    440/506 [=========================>....] - ETA: 0s - loss: 24.6880
    506/506 [==============================] - 0s 123us/step - loss: 24.4546
    Epoch 46/50
    
      5/506 [..............................] - ETA: 0s - loss: 3.0398
    440/506 [=========================>....] - ETA: 0s - loss: 23.9014
    506/506 [==============================] - 0s 123us/step - loss: 24.2430
    Epoch 47/50
    
      5/506 [..............................] - ETA: 0s - loss: 14.0619
    450/506 [=========================>....] - ETA: 0s - loss: 24.5512
    506/506 [==============================] - 0s 123us/step - loss: 23.2035
    Epoch 48/50
    
      5/506 [..............................] - ETA: 0s - loss: 20.2924
    455/506 [=========================>....] - ETA: 0s - loss: 25.8009
    506/506 [==============================] - 0s 123us/step - loss: 25.0679
    Epoch 49/50
    
      5/506 [..............................] - ETA: 0s - loss: 5.2805
    445/506 [=========================>....] - ETA: 0s - loss: 23.9418
    506/506 [==============================] - 0s 123us/step - loss: 23.4596
    Epoch 50/50
    
      5/506 [..............................] - ETA: 0s - loss: 194.0802
    455/506 [=========================>....] - ETA: 0s - loss: 24.0001 
    506/506 [==============================] - 0s 123us/step - loss: 22.7273
    

      

    六,基于Keras的神经网络回归模型

      下面我们自己建立一个神经网络模型来看看。

    1,代码:

    import matplotlib.pyplot as plt
    from math import sqrt
    from matplotlib import pyplot
    import pandas as pd
    from numpy import concatenate
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import mean_squared_error
    from keras.models import Sequential
    from keras.layers.core import Dense ,Dropout,Activation
    from keras.optimizers import Adam
    
    '''Keras实现神经网络回归模型'''
    # 读取数据
    path = 'housing.csv'
    train_df = pd.read_csv(path)
    # 删除不用字符串字段
    # dataset = train_df.drop('jh',axis=1)
    # df转换成array
    values =train_df.values
    # 原始数据标准化,为了加速收敛
    scaler = MinMaxScaler(feature_range=(0,1))
    scaled = scaler.fit_transform(values)
    y = scaled[:,-1]
    X = scaled[:,0:-1]
    
    # 随机拆分训练集与测试集
    from sklearn.model_selection import train_test_split
    train_X,test_X,train_y,test_y = train_test_split(X,y,test_size=0.25)
    
    # 全连接神经网络
    model = Sequential()
    input = X.shape[1]
    # 隐藏层128
    model.add(Dense(128,input_shape=(input,)))
    model.add(Activation('rule'))
    # Dropout层用于防止过拟合
    # model.add(Dropout(0.2))
    # 隐藏层128
    model.add(Dense(128))
    model.add(Activation('relu'))
    # model.add(Dropout(0.2))
    # 没有激活函数用于输出层,因为这是一个回归问题,
    # 我们希望直接预测数值,而不需要采用激活函数进行变换
    model.add(Dense(1))
    # 使用高效的ADAM优化算法以及优化的最小均方误差损失函数
    model.compile(loss='mean_squared_error',optimizer=Adam())
    # early stopping
    from keras.callbacks import EarlyStopping
    early_stopping = EarlyStopping(monitor='val_loss',patience=50,verbose=2)
    # 训练
    history = model.fit(train_X,train_y,epochs=300,batch_size=20,
                        validation_data=(test_X,test_y),verbose=2,
                        shuffle=False,callbacks=[early_stopping])
    # loss曲线
    pyplot.plot(history.history['loss'],label='train')
    pyplot.plot(history.history['val_loss'],label='test')
    pyplot.legend()
    pyplot.show()
    # 预测
    yhat = model.predict(test_X)
    # 预测y 逆标准化
    inv_yhat0 = concatenate((test_X,yhat),axis=1)
    inv_yhat1 = scaler.inverse_transform(inv_yhat0)
    inv_yhat = inv_yhat1[:,-1]
    # 原始y逆标准化
    test_y = test_y.reshape(len(test_y),1)
    inv_y0 = concatenate((test_X,test_y),axis=1)
    inv_y1 = scaler.inverse_transform(inv_y0)
    inv_y = inv_y1[:,-1]
    
    # 计算RMSE
    rmse = sqrt(mean_squared_error(inv_y,inv_yhat))
    print('Test RMSE: %.3f' % rmse)
    plt.plot(inv_y)
    plt.plot(inv_yhat)
    plt.show()
    

      

     如果Boston数据报错,那么可以直接导入Boston数据(在深度学习中这算是小数据集,我们可以直接导入sklearn中Boston数据集)。

    代码如下:

    # 读取数据
    
    boston = datasets.load_boston()
    df_values =boston.data
    

      

    Using TensorFlow backend.
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    dense_1 (Dense)              (None, 128)               1664      
    _________________________________________________________________
    activation_1 (Activation)    (None, 128)               0         
    _________________________________________________________________
    dropout_1 (Dropout)          (None, 128)               0         
    _________________________________________________________________
    dense_2 (Dense)              (None, 128)               16512     
    _________________________________________________________________
    activation_2 (Activation)    (None, 128)               0         
    _________________________________________________________________
    dropout_2 (Dropout)          (None, 128)               0         
    _________________________________________________________________
    dense_3 (Dense)              (None, 1)                 129       
    =================================================================
    Total params: 18,305
    Trainable params: 18,305
    Non-trainable params: 0
    _________________________________________________________________
    Train on 404 samples, validate on 102 samples
    

      此处对结果做以解释:由于神经网络回归,我们是将506个数据按照4:1划分成测试集和训练集,所以得到的结果,也就是我预测的结果是101个数据,。也就是随机取到的数据,并且此神经网络模型建立之前,做了数据预处理,利用fit_transform()函数将数据转化成标准正态分布,并将其归到(0,1)之间,所以得到的结果是零点几也不足为奇,如果要得到原始数据,我们可以对数据不做归一化处理,这样得到的结果也就是原始值。

     Keras解决多标签分类问题

      multi-class classification problem :多分类问题是相对于二分类问题(典型的0-1分类)来说的,意思是类别总数超过两个的分类问题,比如手写数字识别mnist的label总数有10个,每一样本的标签在这10个中取一个。

       multi-class classification problem:多标签分类(或者叫做多标记分类),是指一个样本的标签数量不止一个,即一个样本对应多个标签。

    1,一般问题定义

      一般情况下,假设我们的分类问题有5个标签,样本数量为n ,数学表示为:

      我们用神经网络模型对样本建模,计算:样本的标签概率。模型的输出为:

      现在我们用keras的Sequential模型建立一个简单的模型:

    from keras.layers import Input,Dense
    from keras.models import Sequential
    
    model = Sequential()
    model.add(Dense(10, activation="relu", input_shape=(10,)))
    model.add(Dense(5))
    

      

    2,multi-class classification

      对于多分类问题,接下来要做的是输出层的设计。在多分类中,最常用的就是softmax层。

      softmax层中的softmax函数是logistic函数在多分类问题上的推广,它将一个N维的实数向量压缩成一个满足特定条件的N维实数向量。压缩后的向量满足两个条件:

    • 像两种的每个元素的大小都在[0,1]
    • 所有向量元素的和为1

       因此,softmax适用于多分类问题中对每个类别的概率判断,softmax计算公式如下:

      python代码示例:

    import numpy as np
    
    def Softmax_sim(x):
        y = np.exp(x)
        return y/np.sum(y)
    
    x = np.array([1.0,2.0,3.0,4.0,1.0])
    print(Softmax_sim(x))
    #输出:[ 0.03106277  0.08443737  0.22952458  0.6239125   0.03106277]
    

      假设隐藏层的输出为[1.0,2.0,3.0,4.0,1.0],我们可以根据softmax函数判断属于标签4

    所以,利用keras的函数式定义多分类的模型:

    from keras.layers import Input,Dense
    from keras.models import Model
    
    inputs = Input(shape=(10,))
    hidden = Dense(units=10,activation='relu')(inputs)
    output = Dense(units=5,activation='softmax')(hidden)
    

      

    3,multi-label classification

      在预测多标签分类问题时,假设隐藏层的输出是[-1.0, 5.0, -0.5, 5.0, -0.5 ],如果用softmax函数的话,那么输出为:

    z = np.array([-1.0, 5.0, -0.5, 5.0, -0.5 ])
    print(Softmax_sim(z))
    # 输出为[ 0.00123281  0.49735104  0.00203256  0.49735104  0.00203256]
    

      通过使用softmax,我们可以清楚的选择标签2和标签4,但是我们必须知道每个样本需要多少个标签,或者为概率选择一个阈值。这显然不是我们想要的,因为样本属于每个标签的概率应该是独立的。

      对于一个二分类问题,常用的激活函数是sigmoid函数:

      PS:Sigmoid函数之所以在之前很长一段时间作为神经网络激活函数(现在大家都基本使用Relu函数了),一个很重要的原因是Sigmoid函数的倒数很容易计算,可以用自身表示:

      python代码为:

    import numpy as np
    
    def Sigmoid_sim(x):
        return  1 /(1+np.exp(-x))
    
    a = np.array([-1.0, 5.0, -0.5, 5.0, -0.5])
    print(Sigmoid_sim(a))
    #输出为: [ 0.26894142  0.99330715  0.37754067  0.99330715  0.37754067]
    

      此时,每个标签的概率即是独立的,完整整个模型构建之后,最后一步中最重要的是为模型的编译选择损失函数。在多标签分类中,大多使用binary_crossentropy损失而不是通常在多分类中使用的categorical_crossentropy损失函数,这可能看起来不合理,但是因为每个输出节点都是独立的,选择二元损失,并将网络输出建模为每个标签独立的bernoulli分布。整个多标签分类的模型为:

    from keras.models import Model
    from keras.layers import Input,Dense
    
    inputs = Input(shape=(10,))
    hidden = Dense(units=10,activation='relu')(inputs)
    output = Dense(units=5,activation='sigmoid')(hidden)
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    

      

    4,multi-class 和 multi-label的区别

      multi-class 是相对于binary二分类来说的,指需要分类的东西不止有两个类别,可能是三个类别取一个(如iris分类),或者是10个类别取一个(如手写数字识别mnist)

      而multi-label 是更加general的一种情况了,他说为什么一个sample的标签只能有一个呢。为什么一张图不是猫就是狗呢?难道我不能训练一个人工智能,它能告诉我这张图片既有猫又有狗呢?

      话不多说,下面直接看Keras的multi-label代码:

    def __create_model(self):
        from keras.models import Sequential
        from keras.layers import Dense
        model = Sequential()
        print("create model. feature_dim = %s, label_dim = %s" % (self.feature_dim, self.label_dim))
        model.add(Dense(500, activation='relu', input_dim=self.feature_dim))
        model.add(Dense(100, activation='relu'))
        model.add(Dense(self.label_dim, activation='sigmoid'))
        model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
        return model
    

      

    稍微解说一下:

    • * 整个网络是fully connected全连接网络。
    • * 网络结构是输入层=你的特征的维度
    • * 隐藏层是500*100,激励函数都是relu。隐藏层的节点数量和深度请根据自己的数量来自行调整,这里只是举例。
    • * 输出层是你的label的维度。使用sigmoid作为激励,使输出值介于0-1之间。
    • * 训练数据的label请用0和1的向量来表示。0代表这条数据没有这个位的label,1代表这条数据有这个位的label。假设3个label的向量[天空,人,大海]的向量值是[1,1,0]的编码的意思是这张图片有天空,有人,但是没有大海。
    • * 使用binary_crossentropy来进行损失函数的评价,从而在训练过程中不断降低交叉商。实际变相的使1的label的节点的输出值更靠近1,0的label的节点的输出值更靠近0。

     https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/81090757

    参考文献:(本文是学习此文献的知识,做笔记,仅此而已)

    https://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/

    https://blog.csdn.net/aliceyangxi1987/article/details/73532651

    https://zhuanlan.zhihu.com/p/34712246

  • 相关阅读:
    ABAP 程序中的类 沧海
    ABAP类的方法(转载) 沧海
    More than 100 ABAP Interview Faq's(2) 沧海
    SAP and ABAP Memory总结 沧海
    ABAP Frequently Asked Question 沧海
    ABAP System Reports(Additional functions) 沧海
    ABAP Questions Commonly Asked 1 沧海
    ABAP Tips and Tricks 沧海
    ABAP System Fields 沧海
    ABAP 面试问题及答案(一):数据库更新及更改 SAP Standard (转) 沧海
  • 原文地址:https://www.cnblogs.com/wj-1314/p/10137184.html
Copyright © 2011-2022 走看看