zoukankan      html  css  js  c++  java
  • svm

    SVM material

    Those material work for svm beginner, material concerned with newly and learning theory excluded. if you are willing to study in a deep way, you should get more material from google schoolar etc.

    thesis:

    Support Vector Networks, Vapnik etc. (original paper)

    A Tutorial on Support Vector Machines for Pattern Recognition, C. J. Burges

    Large-Scale Support Vector Machines: Algorithms and Theory, Aditya Krishna Menon (very good survey, mainly on parameter inference)

    Training a Support Vector Machine in the Primal

    BudgetedSVM: A Toolbox for Scalable SVM Approximations, Nemanja Djuric

    Making Large-Scale SVM Learning Practical, T. Joachims

    Sequential Minimal Optimization for SVM, (author missing), (detailed parameter inference based on SMO)

    Fast Training of Support Vector Machines using Sequential Minimal Optimization, John C. Platt, (SMO orginal paper)

    Working Set Selection Using Second Order Information for Training Support Vector Machines, (workset seletion method for libsvm, I am not sure still using it)

    LIBSVM: A Library for Support Vector Machines, Chih-Chung Chang etc, libsvm paper

    Pegasos: Primal Estimated sub-GrAdient SOlver for SVM, Shai Shalev-Shwartz etc., (Pegasos, gradient based techique)

    SGD-QN, LaRank, Antoine Bordes and Léon Bottou, (gradient based method, using quasi-Newton, Hessian matrix and LBFGS involved

    site:

    Support Vector Machine, Wikipedia terms, http://en.wikipedia.org/wiki/Support_vector_machine

    SVM org, http://www.support-vector-machines.org/

    Leon Bottou homepage, http://leon.bottou.org/ (very good site)

    book:Pattern Recognition and Machine learning, C. Bishop

    Kernel Methods for Pattern Analysis, J. Shawe-Taylor and N. Cristianini

    Learning to Classify Text Using Support Vector Machines: Methods, Theory, and Algorithms, T. Joachims

    tools:you can get list of tools for svm: http://www.support-vector-machines.org/SVM_soft.html

    libsvm

    weka

    svm light

    Machout

  • 相关阅读:
    每日一段(A Campaign Speech)(1)
    web站点获取用户IP的安全方法 HTTP_X_FORWARDED_FOR检验
    通过PHP实现浏览器点击下载TXT文档(转)
    php中mysql与mysqli的区别
    软件开发和团队”最小模式”初探2-6人模型(下)
    软件开发和团队”最小模式”初探2-6人模型(上)
    引论-谈下我的软件和团队之路
    软件开发和团队”最小模式”初探1
    C# 时间校验器
    SQL语句删除和添加外键、主键
  • 原文地址:https://www.cnblogs.com/wjgaas/p/4310163.html
Copyright © 2011-2022 走看看