zoukankan      html  css  js  c++  java
  • ml

    基础篇:

    1. 读书《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。如果对算法比较喜欢,可以再阅读《Introduction to Machine Learning》。

    2. 实现经典算法。有几个部分:
    a. 关联规则挖掘 (Apriori, FPTree, etc.)
    b. 分类 (C4.5, KNN, Logistic Regression, SVM, etc.)
    c. 聚类 (Kmeans, DBScan, Spectral Clustering, etc.)
    d. 降维 (PCA, LDA, etc.)
    e. 推荐系统 (基于内容的推荐,协同过滤,如矩阵分解等)
    然后在公开数据集上测试,看实现的效果。可以在下面的网站找到大量的公开数据集:http://archive.ics.uci.edu/ml/

    3. 熟悉几个开源的工具: Weka (用于上手); LibSVM, scikit-learn, Shogun

    4. 到 https://www.kaggle.com/ 上参加几个101的比赛,学会如何将一个问题抽象成模型,并从原始数据中构建有效的特征 (Feature Engineering).

    到这一步的话基本几个国内的大公司都会给你面试的机会。

    进阶篇:

    1. 读书,下面几部都是大部头,但学完进步非常大。
    a.《Pattern Recognition and Machine Learning》
    b.《The Elements of Statistical Learning》
    c.《Machine Learning: A Probabilistic Perspective》
    第一本比较偏Bayesian;第二本比较偏Frequentist;第三本在两者之间,但我觉得跟第一本差不多,不过加了不少新内容。当然除了这几本大而全的,还有很多介绍不同领域的书,例如《Boosting Foundations and Algorithms》,《Probabilistic Graphical Models Principles and Techniques》;以及理论一些的《Foundations of Machine Learning》,《Optimization for Machine Learning》等等。这些书的课后习题也非常有用,做了才会在自己写Paper的时候推公式。

    2. 读论文。包括几个相关会议:KDD,ICML,NIPS,IJCAI,AAAI,WWW,SIGIR,ICDM;以及几个相关的期刊:TKDD,TKDE,JMLR,PAMI等。跟踪新技术跟新的热点问题。当然,如果做相关research,这一步是必须的。例如我们组的风格就是上半年读Paper,暑假找问题,秋天做实验,春节左右写/投论文。

    3. 跟踪热点问题。例如最近几年的Recommendation System,Social Network,Behavior Targeting等等,很多公司的业务都会涉及这些方面。以及一些热点技术,例如现在很火的Deep Learning。

    4. 学习大规模并行计算的技术,例如MapReduce、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。

    5. 参加实际的数据挖掘的竞赛,例如KDDCUP,或 https://www.kaggle.com/ 上面的竞赛。这个过程会训练你如何在一个短的时间内解决一个实际的问题,并熟悉整个数据挖掘项目的全过程。

    6. 参与一个开源项目,如上面提到的Shogun或scikit-learn还有Apache的Mahout,或为一些流行算法提供更加有效快速的实现,例如实现一个Map/Reduce平台下的SVM。这也是锻炼Coding的能力。

    到这一步国内的大公司基本是想哪去哪,而且待遇也不差;如果英语好,去US那边的公司难度也不大了。

  • 相关阅读:
    BZOJ5212 ZJOI2018历史(LCT)
    BZOJ5127 数据校验
    253. Meeting Rooms II
    311. Sparse Matrix Multiplication
    254. Factor Combinations
    250. Count Univalue Subtrees
    259. 3Sum Smaller
    156. Binary Tree Upside Down
    360. Sort Transformed Array
    348. Design Tic-Tac-Toe
  • 原文地址:https://www.cnblogs.com/wjgaas/p/4386563.html
Copyright © 2011-2022 走看看