def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
return image_numpy
image_numpy = image_tensor.cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
image_numpy = image_numpy[:,:,0]
return image_numpy.astype(imtype)
image_tensor里面的数值为(-1,1),现在需要将图像换成图像格式(0,255)
1、np.transpose()
代码:
import numpy as np
a = np.array(range(30)).reshape(2, 3, 5)
b = a.transpose(1, 0, 2)
print ("a = ")
print (a)
print (a.shape)
print ("===================== \n")
print ("a.transpose() = ")
print (b)
print (b.shape)
运行结果:

2、np.clip()
代码:
import numpy as np x=np.array([1,2,3,5,6,7,8,9]) y=np.clip(x,3,8) print (y)
运行结果:
