zoukankan      html  css  js  c++  java
  • 斐波那契数列(Fibonacci)(递归,非递归)(动态规划,自顶向下,自底向上)

    源文件:http://pan.baidu.com/share/link?shareid=439719&uk=3912660076

    //Main

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace Fibonacci
    {
        class Program
        {
            static void Main(string[] args)
            {
                Console.WriteLine("Would you like to know which Fibonacci Numbers:");
                int number = Convert.ToInt32(Console.ReadLine());
                //
                Function obj = new Function();
                Console.WriteLine();
                Console.Write("The {0} Fibonacci number is:{1}", number, obj.Fibonacci(number));
                //
                Console.WriteLine();
                Function obj2 = new Function(number);
                Console.Write("The {0} Fibonacci number is:{1}", number, obj2.BottomUpNotRecursion(number));
                //
                Console.WriteLine();
                Console.Write("The {0} Fibonacci number is:{1}", number, obj2.TopDownRecursion(number));
                Console.ReadKey();
    
            }
        }
    }

    //Class

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    
    namespace Fibonacci
    {
        class Function
        {
            private int[] array;
    
            public Function()
            {
    
            }
    
            /// <summary>
            /// Function
            /// </summary>
            /// <param name="length"></param>
            public Function(int length)
            {
                if (length > 0)
                {
                    array = new int[length + 1];
                    array[0] = 1;
                    array[1] = 1;
                }
                if (length == 0)
                {
                    array = new int[1];
                    array[0] = 1;
                }
            }
    
            /// <summary>
            /// Fibonacci数列定义为:
            ///             无穷数列1,1,2,3,5,8,13,21,34,55,……
            ///        ┌ 1             n=0     
            ///   F(n)=│ 1             n=1
            ///        └ F(n-1)+F(n-2) n>1
            /// </summary>
            /// <param name="number">第几个斐波那契数</param>
            /// <returns></returns>
            public int Fibonacci(int number)
            {
                if (number <= 1)
                {
                    return 1;
                }
                else
                {
                    return Fibonacci(number - 1) + Fibonacci(number - 2);
                }
            }
    
            /// <summary>
            /// 动态规划思想:
            ///     1.自底向上非递归算法
            /// </summary>
            /// <param name="number"></param>
            /// <returns></returns>
            public int BottomUpNotRecursion(int number)
            {
                int copynumber = 0;
                if (number < 2)
                {
                    copynumber = 1;
                }
                else
                {
                    int one = array[0];
                    int two = array[1];
    
                    for (int i = 2; i < array.Length; i++)
                    {
                        array[i] = one + two;
                        one = two;
                        two = array[i];
                        copynumber = array[i];
                    }
                }
    
                return copynumber;
            }
            
            /// <summary>
            ///     2.自顶向下递归算法
            /// </summary>
            /// <param name="number"></param>
            /// <returns></returns>
            public int TopDownRecursion(int number)
            {
                if (number <= 2)
                {
                    if (number == 0)
                        return array[0];
                    if (number == 1)
                        return array[1];
                    if (number == 2)
                        return array[2] = array[0] + array[1];
                }
                else
                {
                    //递归只是一个“牵引线”,目的是为了让数组储存值。
                    TopDownRecursion(number - 1);
                    array[number] = array[number - 1] + array[number - 2];
                }
                return array[number];
            }
        }
    }

    截图


  • 相关阅读:
    ggplot2颜色操作
    Legendsggplot2图例的一些操作
    linux下 ^M
    R语言中数据框的横向合并与纵向合并
    R语言处理缺失数据的高级方法
    R语言 聚类分析
    Gradle 多渠道打包的使用和错误分析
    android 应用使用第三方字体 (瘦身方案)
    月历卡片
    Intercept back button from soft keyboard(从软键盘拦截后退按钮)
  • 原文地址:https://www.cnblogs.com/wjshan0808/p/3055767.html
Copyright © 2011-2022 走看看