zoukankan      html  css  js  c++  java
  • 系统综合实践——第7次实践作业 01组

    一、在树莓派中安装opencv库

    首先安装依赖,在安装过程中可能会遇到诸多“俄罗斯套娃”的依赖项,就不停地耐心安装。

    pip3 install --upgrade setuptools
    pip3 install numpy Matplotlib
    
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    sudo apt-get install libatlas-base-dev
    sudo apt install libqt4-test
    sudo apt install libqtgui4
    

    然后pip3安装opencv以及opencv,这样默认安装最新版

    pip3 install opencv-python
    pip3 install opencv-contrib-python
    

    安装完毕,导入成功!

    img

    二、使用opencv和python控制树莓派的摄像头

    示例代码

    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
     
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
     
    # allow the camera to warmup
    time.sleep(2) 
     
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
     
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    

    通过摄像头实时拍摄查看视频

    import cv2
    
    cap = cv2.VideoCapture(0)
    while(1):
        ret, frame = cap.read()
        cv2.imshow("capture", frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows() 
    

    三、利用树莓派的摄像头实现人脸识别

    1.facerec_on_raspberry_pi.py

    facerec_on_raspberry_pi.py

    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("Biden.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Biden"
            print("I see someone named {}!".format(name))
    

    代码所在目录下应放一张用于比对的照片,文件名Biden.jpg

    2.facerec_from_webcam_faster.py

    facerec_from_webcam_faster.py

    import face_recognition
    import cv2
    import numpy as np
    
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    obama_image = face_recognition.load_image_file("Obama.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    biden_image = face_recognition.load_image_file("Biden.jpg")
    biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        obama_face_encoding,
        biden_face_encoding
    ]
    
    known_face_names = [
        "Barack Obama",
        "Joe Biden"
    ]
    
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    
    process_this_frame = True
    
    while True:
    
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
    
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    已经学习过本地的图片

    未学习过的人脸图片

    四、结合微服务的进阶任务

    (1).安装Docker

    下载安装脚本

    curl -fsSL https://get.docker.com -o get-docker.sh
    

    执行安装脚本(使用阿里云镜像)

    sh get-docker.sh --mirror Aliyun
    

    将当前用户加入docker用户组

    sudo usermod -aG docker $USER
    

    尝试下查看docker版本

    (2).配置docker的镜像加速

    请参考第一次实验博客

    编辑完成后,restart一下docker

    service docker restart
    

    (3).定制自己的opencv镜像

    首先拉取镜像

    docker pull sixsq/opencv-python
    

    运行这个镜像

    docker run -it sixsq/opencv-python /bin/bash
    

    在容器中,安装 "picamera[array]" dlib face_recognition

    pip在线安装延迟严重,采用离线安装

    安装成功,退出容器
    然后commit

    编写Dockerfile

    FROM wjx_opencv
    MAINTAINER 555
    RUN mkdir /myapp
    WORKDIR /myapp
    COPY myapp .
    

    build

    docker build -t myopencv .
    

    (4).运行容器执行facerec_on_raspberry_pi.py

    docker run -it --device=/dev/vchiq --device=/dev/video0 --name facerec myopencv
    python3 facerec_on_raspberry_pi.py
    

    如果不加--device=/dev/vchiq参数
    则会出现以下报错

    * failed to open vchiq instance
    

    (5).附加选做:opencv的docker容器中运行facerec_from_webcam_faster.py

    在Windows系统中安装Xming
    安装过程一路默认即可(https://sourceforge.net/projects/xming/)

    检查树莓派的ssh配置中的X11是否开启

    cat /etc/ssh/sshd_config
    

    然后编写run.sh

    #sudo apt-get install x11-xserver-utils
    xhost +
    docker run -it 
            --net=host 
            -v $HOME/.Xauthority:/root/.Xauthority 
            -e DISPLAY=:10.0  
            -e QT_X11_NO_MITSHM=1 
            --device=/dev/vchiq 
            --device=/dev/video0 
            --name facerecgui 
            myopencv 
    	python3 facerec_from_webcam_faster.py
    

    sh run.sh
    

    五、遇到的问题

    (1)关于安装OpenCV的依赖

    安装OpenCV,安装了一天。还是比较繁琐的。安装OpenCV的依赖,从最基础的依赖安装。

    其中有依赖是套中套,在安装的过程中需要彼此依赖,比如安装gtk2与gtk3,所以我们是采用

    sudo aptitude install libgtk2.0-dev libgtk-3-dev
    

    他在遇到相互依赖时会给出解决方式,我们采取第二种方式,降低部分依赖的版本就行了(忘了截图)

    (2)import cv2出现的问题

    在import cv2时会出现依赖公共的库没有添加,这些就直接百度搜索,然后apt-get install 即可,可参考安装libImath-2_2.so.23 公共库

    (3)undefined symbol: __atomic_fetch_add_8

    在import cv2的最后一个问题

    vim ~/.bashrc注意是pi用户下的bashrc,不是root下的bashrc
    然后在末尾加上这段话,再source ~/.bashrc

    export LD_PRELOAD=/usr/lib/arm-linux-gnueabihf/libatomic.so.1
    

    (4)关于摄像头人脸识别

    在本地放需要学习的图片,然后再通过利用树莓派摄像头进行其他图片的识别,即可。

    (5)关于pip3 install安装时超时的问题(如face_recognition)

    可以先再外面下载好相应的包之后,再通过winscp导入到树莓派,再离线安装

    (6)在镜像里面安装"picamera[array]" dlib face_recognition时,在线安装比较延迟。

    同样可以采用离线安装。通过本地下载文件,把文件复制进容器里面(docker cp file id:path),然后采用pip3离线安装方法。

    六、在线协作

    学号 姓名 工作
    031702539 李清宇 OpenCV安装,硬件的操作,资料收集
    031702547 汪佳祥 OpenCV安装,人脸识别,结合微服务,修改博客
    031702521 杨忠燎 OpenCV安装,提供错误解决方案,撰写博客

    通过视频,屏幕分享进行交流。成员通过TeamViewer进行远程操作,参与实验的各个步骤。

    实验总共花费了整整三天,关于OpenCV的安装比较繁琐。反反复复弄了一天完成,人脸识别和结合微服务进展比较顺利。

  • 相关阅读:
    Docker02 Docker初识:第一个Docker容器和Docker镜像
    Docker01 CentOS配置Docker
    Jenkins02:Jenkins+maven+svn集成
    Junit01 新建Maven项目
    Junit02 Junit创建及简单实现
    Jenkins01:linux+jenkins+ant+jmeter集成
    Jenkins初识03:构建定时任务
    python 协程
    python之socket 网络编程
    python 面向对象
  • 原文地址:https://www.cnblogs.com/wjx-1999/p/13051617.html
Copyright © 2011-2022 走看看