zoukankan      html  css  js  c++  java
  • DropBlock: A regularization method for convolutional networks

    DropBlock: A regularization method for convolutional networks

    一. 论文简介

    正则化卷积层,防止过拟合

    主要做的贡献如下(可能之前有人已提出):

    1. 正则化卷积层的模块(正则化Conv层),类似dropout(正则化FC层)

    二. 模块详解

    2.1 论文思路简介

    1. 正常的DropOut是对FC层做随机失活,如何对卷积层做随机失活?
    2. 按照DropOut的思路,直接对卷积层的feature做随机失活,如下图(b)所示,试验效果并不理想,作者猜测是由于卷积层对局部敏感,而随机失活导致局部某些信息得以保留,造成效果不好。
    3. DropOut的思想融合到卷积之中,局部块随机失活,试验效果随机块失活明显优于随机点失活

    2.2 具体实现

    2.2.1 具体实现

    其实按照上面的分析,我们就可以大概猜到怎么做了。

    需要哪些参数:

    • 随机失活块的大小,这里按照卷积一样,(Kernel=K*K)
    • 创建一块 (Mask) 符合 (Bernoulli) 分布
    • 循环 (Mask) 对于每一个 (M_{ij}=0) 的点,使得其周围 (Kernel) 个点也为0
    • 价格 (Mask) 作用于 (feature) 上,(feature=M*Feature)
    • 归一化特征图:(feature=feature*count(M)/count\_ones(M))

    其实上面的公式很简单,就是2.1节说的那样,安装随机块失活即可,什么方法都可以。以下代码主要使用(maxpooling)进行(block)的操作,其它地方都一样。

    import torch
    import torch.nn.functional as F
    from torch import nn
    
    
    class DropBlock2D(nn.Module):
        r"""Randomly zeroes 2D spatial blocks of the input tensor.
        As described in the paper
        `DropBlock: A regularization method for convolutional networks`_ ,
        dropping whole blocks of feature map allows to remove semantic
        information as compared to regular dropout.
        Args:
            drop_prob (float): probability of an element to be dropped.
            block_size (int): size of the block to drop
        Shape:
            - Input: `(N, C, H, W)`
            - Output: `(N, C, H, W)`
        .. _DropBlock: A regularization method for convolutional networks:
           https://arxiv.org/abs/1810.12890
        """
    
        def __init__(self, drop_prob, block_size):
            super(DropBlock2D, self).__init__()
    
            self.drop_prob = drop_prob
            self.block_size = block_size
    
        def forward(self, x):
            # shape: (bsize, channels, height, width)
    
            assert x.dim() == 4, 
                "Expected input with 4 dimensions (bsize, channels, height, width)"
    
            if not self.training or self.drop_prob == 0.:
                return x
            else:
                # get gamma value
                gamma = self._compute_gamma(x)
    
                # sample mask
                mask = (torch.rand(x.shape[0], *x.shape[2:]) < gamma).float()
    
                # place mask on input device
                mask = mask.to(x.device)
    
                # compute block mask
                block_mask = self._compute_block_mask(mask)
    
                # apply block mask
                out = x * block_mask[:, None, :, :]
    
                # scale output
                out = out * block_mask.numel() / block_mask.sum() # 归一化
    
                return out
    
        def _compute_block_mask(self, mask):
            # 使用maxpooling代替block计算
            block_mask = F.max_pool2d(input=mask[:, None, :, :],
                                      kernel_size=(self.block_size, self.block_size),
                                      stride=(1, 1),
                                      padding=self.block_size // 2) # 由于使用padding,边界概率计算不准确
    
            if self.block_size % 2 == 0:
                block_mask = block_mask[:, :, :-1, :-1]
    
            block_mask = 1 - block_mask.squeeze(1)
    
            return block_mask
    
        def _compute_gamma(self, x):
            return self.drop_prob / (self.block_size ** 2)
    
    
    class DropBlock3D(DropBlock2D):
        r"""Randomly zeroes 3D spatial blocks of the input tensor.
        An extension to the concept described in the paper
        `DropBlock: A regularization method for convolutional networks`_ ,
        dropping whole blocks of feature map allows to remove semantic
        information as compared to regular dropout.
        Args:
            drop_prob (float): probability of an element to be dropped.
            block_size (int): size of the block to drop
        Shape:
            - Input: `(N, C, D, H, W)`
            - Output: `(N, C, D, H, W)`
        .. _DropBlock: A regularization method for convolutional networks:
           https://arxiv.org/abs/1810.12890
        """
    
        def __init__(self, drop_prob, block_size):
            super(DropBlock3D, self).__init__(drop_prob, block_size)
    
        def forward(self, x):
            # shape: (bsize, channels, depth, height, width)
    
            assert x.dim() == 5, 
                "Expected input with 5 dimensions (bsize, channels, depth, height, width)"
    
            if not self.training or self.drop_prob == 0.:
                return x
            else:
                # get gamma value
                gamma = self._compute_gamma(x)
    
                # sample mask
                mask = (torch.rand(x.shape[0], *x.shape[2:]) < gamma).float()
    
                # place mask on input device
                mask = mask.to(x.device)
    
                # compute block mask
                block_mask = self._compute_block_mask(mask)
    
                # apply block mask
                out = x * block_mask[:, None, :, :, :]
    
                # scale output
                out = out * block_mask.numel() / block_mask.sum()
    
                return out
    
        def _compute_block_mask(self, mask):
            block_mask = F.max_pool3d(input=mask[:, None, :, :, :],
                                      kernel_size=(self.block_size, self.block_size, self.block_size),
                                      stride=(1, 1, 1),
                                      padding=self.block_size // 2)
    
            if self.block_size % 2 == 0:
                block_mask = block_mask[:, :, :-1, :-1, :-1]
    
            block_mask = 1 - block_mask.squeeze(1)
    
            return block_mask
    
        def _compute_gamma(self, x):
            return self.drop_prob / (self.block_size ** 3)
    
    
    if __name__ == "__main__":
        x = torch.ones(size=(10,256,64,64),dtype=torch.float32)
        layer = DropBlock2D(0.1, 5)
        y = layer(x)
    

    三. 参考文献

  • 相关阅读:
    php实现cookie加密解密
    三个php加密解密算法
    一个经典的PHP加密解密算法
    Webpack 核心模块 tapable 解析(转)
    详解基于vue,vue-router, vuex以及addRoutes进行权限控制
    编写一个插件
    详解css3 pointer-events(阻止hover、active、onclick等触发事件来
    Dockerfile HEALTHCHECK详解
    Dockerfile 指令 WORKDIR介绍
    NPM私有包部署到私有仓库
  • 原文地址:https://www.cnblogs.com/wjy-lulu/p/13840641.html
Copyright © 2011-2022 走看看