Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output
2
题目意思:评定牛的等级,有n头牛,进行了m场比赛,位置在前面的是胜利的牛的编号,如果一头牛和剩下的牛都能确定等级关系,说明可以去确定该牛的等级
,求出可以确定等级的牛的个数
解题思路:这是一个利用最短路floyed算法的一个传递闭包问题,如果一个点和其余各点都确定关系了,那么这个点的等级就可以确定了。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int n,m; int map[200][200]; int floyd() { int i,j,k; for(k=1; k<=n; k++) for(i=1; i<=n; i++) for(j=1; j<=n; j++) { if(map[i][k]&&map[k][j]) { map[i][j]=1;///如果任意两个点能够通过第三个点发生关系,那么说明这两个点也是有关系的 } } } int main() { int a,b,i,j,count,sum; while(scanf("%d%d",&n,&m)!=EOF) { memset(map,0,sizeof(map)); for(i=0; i<m; i++) { scanf("%d%d",&a,&b); map[a][b]=1;///可以确定关系的利用邻接矩阵记录为1 } floyd(); count=0; for(i=1; i<=n; i++) { sum=0; for(j=1; j<=n; j++) { if(map[i][j]||map[j][i]) { sum++; } } if(sum==n-1)///如果一个点和其余各点的关系确定,那么这个点就可以确定等级 { count++; } } printf("%d ",count); } return 0; }