题目链接:
示例:
3
/ \
9 20
/ \
15 7
在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24
题解
思路
这道题的关键是如何找到左叶子节点。通过观察,我们可以发现,判断节点是否是左叶子节点需要其父节点的帮助,即当 父节点的左子节点不为空,左子节点的左右子节点都为空 时,这个左子节点就是左叶子节点。该题可以采取“前中后序遍历”,可以采用“递归或迭代方法”。
递归(前序遍历)
代码(C++)
//递归法(前序遍历) class Solution { public: void sumLeft(TreeNode* node, int& result){ if (node->left == nullptr && node->right == nullptr) return; if (node->left != nullptr && node->left->left == nullptr && node->left->right == nullptr) { //中 result += node->left->val; } if (node->left != nullptr) sumLeft(node->left, result); //左 if (node->right != nullptr) sumLeft(node->right, result); //右 } int sumOfLeftLeaves(TreeNode* root) { int result = 0; if (root == nullptr) return result; sumLeft(root, result); return result; } };
代码(JavaScript)
//递归 var sumOfLeftLeaves = function(root) { if (root === null) return 0; var midValue = 0; if (root.left != null && root.left.left === null && root.left.right === null) { midValue = root.left.val; } var leftValue = sumOfLeftLeaves(root.left); var rightValue = sumOfLeftLeaves(root.right); var result = midValue + leftValue + rightValue; return result; };
统一迭代(后序遍历)
代码(C++)
//统一迭代法(后序遍历) class Solution { public: int sumOfLeftLeaves(TreeNode* root) { int result = 0; stack<TreeNode*> sta; if(root != nullptr) sta.push(root); while (!sta.empty()) { TreeNode* node = sta.top(); if (node != nullptr) { sta.pop(); if (node->left) sta.push(node->left); if (node->right) sta.push(node->right); sta.push(node); sta.push(nullptr); } else { sta.pop(); node = sta.top(); sta.pop(); if (node->left != nullptr && node->left->left == nullptr && node->left->right == nullptr) { result += node->left->val; } } } return result; } };
代码(JavaScript)
//迭代 var sumOfLeftLeaves = function(root) { var result = 0; let stackNode = []; if (root != null) stackNode.push(root); while (stackNode.length != 0) { var node = stackNode.pop(); if (node != null) { if (node.left) stackNode.push(node.left); if (node.right) stackNode.push(node.right); stackNode.push(node); stackNode.push(null); } else { node = stackNode.pop(); if (node.left != null && node.left.left === null && node.left.right === null) { result += node.left.val; } } } return result; };