zoukankan      html  css  js  c++  java
  • [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html

    solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

    # caffe train --solver=*_slover.prototxt
    

      

    在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

    到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

    • Stochastic Gradient Descent (type: "SGD"),
    • AdaDelta (type: "AdaDelta"),
    • Adaptive Gradient (type: "AdaGrad"),
    • Adam (type: "Adam"),
    • Nesterov’s Accelerated Gradient (type: "Nesterov") and
    • RMSprop (type: "RMSProp")

     具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

    Solver的流程:

    1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

    2.     通过forward和backward迭代的进行优化来跟新参数。

    3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

    4.     在优化过程中显示模型和solver的状态

    在每一次的迭代过程中,solver做了这几步工作:

    1、调用forward算法来计算最终的输出值,以及对应的loss

    2、调用backward算法来计算每层的梯度

    3、根据选用的slover方法,利用梯度进行参数更新

    4、记录并保存每次迭代的学习率、快照,以及对应的状态。

    接下来,我们先来看一个实例:

    net: "examples/mnist/lenet_train_test.prototxt"
    test_iter: 100
    test_interval: 500
    base_lr: 0.01
    momentum: 0.9
    type: SGD
    weight_decay: 0.0005
    lr_policy: "inv"
    gamma: 0.0001
    power: 0.75
    display: 100
    max_iter: 20000
    snapshot: 5000
    snapshot_prefix: "examples/mnist/lenet"
    solver_mode: CPU
    

      接下来,我们对每一行进行详细解译:

    net: "examples/mnist/lenet_train_test.prototxt"

    设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

    也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

    train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
    test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"
    

      接下来第二行:

    test_iter: 100
    

      这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

    test_interval: 500
    

      测试间隔。也就是每训练500次,才进行一次测试。

    base_lr: 0.01
    lr_policy: "inv"
    gamma: 0.0001
    power: 0.75
    

      

    这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

    lr_policy可以设置为下面这些值,相应的学习率的计算为:

      • - fixed:   保持base_lr不变.
      • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
      • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
      • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
      • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
      • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
      • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

    multistep示例:

    base_lr: 0.01
    momentum: 0.9
    weight_decay: 0.0005
    # The learning rate policy
    lr_policy: "multistep"
    gamma: 0.9
    stepvalue: 5000
    stepvalue: 7000
    stepvalue: 8000
    stepvalue: 9000
    stepvalue: 9500
    

      接下来的参数:

    momentum :0.9
    

      上一次梯度更新的权重,具体可参看下一篇文章。

    type: SGD
    

      优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

    weight_decay: 0.0005
    

      权重衰减项,防止过拟合的一个参数。

    display: 100
    

      每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

    max_iter: 20000
    

      最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

    snapshot: 5000
    snapshot_prefix: "examples/mnist/lenet"
    

      

    快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

    还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

    也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

    solver_mode: CPU
    

      

    设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

    注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

  • 相关阅读:
    jquery easy ui 学习 (8)basic treegrid
    jquery easy ui 学习 (7) TreeGrid Actions
    jquery easy ui 学习 (6) basic validatebox
    jquery easy ui 学习 (5) windowlayout
    jquery easy ui 学习 (4) window 打开之后 限制操纵后面元素属性
    提示“应用程序无法启动,因为应用程序的并行配置不正确”不能加载 System.Data.SQLite.dll
    visual studio 添加虚线的快捷键
    VS2010打开项目时,出现“已经在解决方案中打开了具有该名称的项目”问题的解决方案
    visual studio 编译时 出现 Files 的值 乱码
    微信 连接被意外关闭
  • 原文地址:https://www.cnblogs.com/wlzy/p/9432774.html
Copyright © 2011-2022 走看看