zoukankan      html  css  js  c++  java
  • 学习换脸:Switching Eds: Face swapping with Python, dlib, and OpenCV

    学习GitHub上比较火换脸博客,原英文版:https://matthewearl.github.io/2015/07/28/switching-eds-with-python/

    系统win10,x64

    1. 安装python 2.7
    2. opencv3.0下载,安装,配置环境变量(所需python版本为2.7)
    3. 下载numpy,版本numpy-1.10.2-win32-superpack-python2.7,必须与python版本一致,不然即使找到了cv模块也不能够运行。
    4. opencv文件夹中,build->python->2.7 复制2.7下面的所有文件 到C:Python27Libsite-packages 中
    5. 测试是否配置成功:
      import cv2
      image = cv2.imread("0.png")
      cv2.imshow("Image",image)
      cv2.waitKey(0)

    开始学习换脸:

    1. 下载boost,编译boost:解压,执行bootstrap.bat(使用vs2015编译),会在boost根目录生成 b2.exe 、bjam.exe 、project-config.jam 、bootstrap.log四个文件,其中,b2.exe 、bjam.exe 这两个exe作用是一样的,bjam.exe 是老版本,b2是bjam的升级版本。运行bjam.exe,编译c++版本的boost库,配置环境变量BOOST_ROOT=C:oost_1_60_0;BOOST_LIBRARYDIR=C:oost_1_60_0stagelib。再编译python动态链接库,b2.exe --with-python  --build-type=complete。
    2. 下载dlib从http://dlib.net/,Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.编译python API,命令python setup.py install
    3. 使用dlib抽取脸部标志点:Dlib实现了paper ”one millisecond face alignment with an ensemble of regression trees" by Vahid Kazemi and Josephine Sullivan. 虽然算法本身很复杂,但是它的python接口的使用很简单:
       1 import cv2
       2 import dlib
       3 import numpy
       4 import sys
       5 
       6 PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
       7 SCALE_FACTOR = 1
       8 FEATURE_AMOUNT = 11
       9 
      10 FACE_POINTS = list(range(17, 68))
      11 MOUTH_POINTS = list(range(48, 68))
      12 RIGHT_BROW_POINTS = list(range(17, 22))
      13 LEFT_BROW_POINTS = list(range(22, 27))
      14 RIGHT_EYE_POINTS = list(range(36, 42))
      15 LEFT_EYE_POINTS = list(range(42, 48))
      16 NOSE_POINTS = list(range(27, 35))
      17 JAW_POINTS = list(range(0, 17))
      18 
      19 # Points used to line up the images
      20 ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
      21                 RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)
      22 
      23 # Points from the second image to overlay on the first. The convex hull of
      24 # each element will be overlaid
      25 OVERLAY_POINTS = [
      26     LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS
      27                   + RIGHT_BROW_POINTS,
      28     NOSE_POINTS + MOUSE_POINTS,
      29     ]
      30 
      31 # Amount of blur to use during color correction, as a fraction of the
      32 # pupillary distance
      33 COLOUR_CORRECT_BLUR_FRAC = 0.6
      34 
      35 detector = dlib.get_frontal_face_detector()
      36 predictor = dlib.shape_predictor(PREDICTOR_PATH)
      37 
      38 class TooManyFaces(Exception):
      39     pass
      40 
      41 class NoFaces(Exception):
      42     pass
      43 
      44 ## input: an image in the form of a numpy array
      45 ## return: a 68 * 2 element matrix, each row corresponding with
      46 ## the x, y coordintes of a pariticular feature point in the input image
      47 def get_landmarks(im):
      48     rects = detector(im, 1)
      49 
      50     if len(rects) > 1:
      51         raise TooManyFaces
      52     if len(rects) == 0:
      53         raise NoFaces
      54 
      55     # the feature extractor (predictor) requires a rough bounding box as input
      56     # to the algorithm. This is provided by a traditional face detector (
      57     # detector) which returns a list of rectangles, each of which corresponding
      58     # a face in the image
      59     return numpy.matrix([[p.x p.y] for p in predictor(im, rects[0]).parts()])

      为了使用predictor,需要利用一个提前训练好的model:shape_predictor_68_face_landmarks.dat,从http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2下载

    4. 用Procrustes Analysis进行脸部对准:目前我们已经有两个人脸的landmark矩阵,矩阵的每一行代表一个脸部特征的坐标。现在我们要做的是找出如何通过旋转、平移、和尺度操作使得第一张脸的特征点与第二张脸的尽可能的匹配。找到这个合适的匹配变换之后,我们就可以将第二张脸用同样的变换覆盖第一张脸。

    从数学上考虑,我们寻找平移参数T,尺度参数s,和旋转变换矩阵R使得如下目标函数

    最小化,其中R是2*2的正交矩阵,s是标量,T是2*1的向量,pi和qi是landmark矩阵的行(对应的脸部特征坐标)。

    这个问题可以被Ordinary Procrustes Analysis求解。

    • def transformation_from_points(points1, points2):
          """
          Return an affine transformation [s * R | T] such that:
          
              sum || s*R*p1,i + T - p2,i||^2
              
          is minimized.
          """
      
          # Solve the procrustes problem by substracting centroids, scaling by the
          # standard deviation, and then using the SVD to calculate the rotation. See
          # the following for more details:
          # https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
      
          points1 = points1.astype(numpy.float64)
          points2 = points2.astype(numpy.float64)
      
          c1 = numpy.mean(points1, axis=0)
          c2 = numpy.mean(points2, axis=0)
          points1 -= c1
          points2 -= c2
      
          s1 = numpy.std(points1)
          s2 = numpy.std(points2)
          points1 /= s1
          points2 /= s2
      
          U, S, Vt = numpy.linalg.svd(points1.T * points2)
      
          # The R we seek is in fact the transpose of the one given by U * Vt. This
          # is because the above formulation assumes the matrix goes on the right
          # (with row vectors) where as our solution requires the matrix to be on the
          # left (with column vectors).
          R = (U * Vt).T
      
          return numpy.vstack([numpy.hstack(((s2 / s1) * R,
                                             c2.T - (s2 / s1) * R * c1.T)),
                               numpy.matrix([0., 0., 1.])])

       求解步骤:

    1) 将输入矩阵转化为浮点型,这一操作被后面步骤需要;

    2) 每个点集减去中心点(去中心操作);

    3) 每个点集除以标准差,解决尺度问题;

    4) 使用SVD (Singular Value Decomposition) 计算旋转矩阵,解Orthogonal Procrustes Problem;

    5) 返回完整的仿射变换矩阵,维度3* 3.

    获得的仿射变换可以应用到第二幅图像,与第一张图像匹配:

    1 def warp_im(im, M, dshape):
    2     output_im = numpy.zeros(dshape, dtype=im.dtype)
    3     cv2.warpAffine(im,
    4                    M[:2],
    5                    (dshape[1], dshape[0]),
    6                    dst=output_im,
    7                    borderMode=cv2.BORDER_TRANSPARENT,
    8                    flags=cv2.WARP_INVERSE_MAP)
    9     return output_im

     

    5. 计算mask,并进行色彩校正:利用眼部和眉毛区域特征点计算二维凸包,鼻子和嘴部特征点再计算二维凸包,获得一个五官的mask,代码和结果如下:

     1 def draw_convex_hull(im, points, color):
     2     points = cv2.convexHull(points)
     3     cv2.fillConvexPoly(im, points, color=color)
     4 
     5 def get_face_mask(im, landmarks):
     6     im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
     7 
     8     for group in OVERLAY_POINTS:
     9         draw_convex_hull(im,
    10                          landmarks[group],
    11                          color=1)
    12 
    13     im = numpy.array([im, im, im]).transpose((1, 2, 0))
    14 
    15     im = (cv2.GaussianBlur(im, (FEATURE_AMOUNT, FEATURE_AMOUNT), 0) > 0) * 1.0
    16     im = cv2.GaussianBlur(im, (FEATURE_AMOUNT, FEATURE_AMOUNT), 0)
    17 
    18     return im

    如果我们直接将脸部mask区域覆盖,我们会发现脸部颜色不一致的问题:

     进行色彩矫正,改变第二张脸的颜色使其可以与第一张脸匹配。做法是将第二张脸的颜色除以第二张脸的高斯模糊值,再乘以第一张脸的高斯模糊值,点操作。参考https://en.wikipedia.org/wiki/Color_balance#Scaling_monitor_R.2C_G.2C_and_B,并没有将整幅图像乘以常数因子,而是将每个像素乘以它自己的尺度因子。

    通过这个操作,可以一定程度上弥补两幅图像之间的亮度不同问题。代码如下:

    def correct_colors(im1, im2, landmarks1):
        blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
            numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
            numpy.mean(landmarks2[RIGHT_EYE_POINTS], axis=0))
        blur_amount = int(blur_amount)
        if blur_amount % 2 == 0:
            blur_amount += 1
    
        print blur_amount
    
        im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
        im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
    
        cv2.imshow("Image", im1_blur) # warp_im(im2, M, im1.shape)
        cv2.waitKey(0)
        cv2.imshow("Image", im2_blur) # warp_im(im2, M, im1.shape)
        cv2.waitKey(0)
    
        # Avoid divide-by-zero errors:
        im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
    
        cv2.imshow("Image", im2_blur) # warp_im(im2, M, im1.shape)
        cv2.waitKey(0)
        cv2.destroyWindow("Image")
        return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
                im2_blur.astype(numpy.float64))

     这种做法可以在粗略地解决色彩不一致问题,效果与高斯kernel的大小密切相关:kernel太小,第一张脸中本应该被覆盖的脸部特征会出现在最后的融合图中;kernel太大,第二张脸外部的像素会被引入融合图像,产生污点。下图的kernel size等于0.05*瞳间距。

    6. 融合:将经过色彩矫正的第二张脸的mask区域与第一张脸融合:

    output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

    至此换脸全部完成,全部代码如下:

    import cv2
    import dlib
    import numpy
    import sys
    
    PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
    SCALE_FACTOR = 1
    FEATURE_AMOUNT = 11
    
    FACE_POINTS = list(range(17, 68))
    MOUTH_POINTS = list(range(48, 61))
    RIGHT_BROW_POINTS = list(range(17, 22))
    LEFT_BROW_POINTS = list(range(22, 27))
    RIGHT_EYE_POINTS = list(range(36, 42))
    LEFT_EYE_POINTS = list(range(42, 48))
    NOSE_POINTS = list(range(27, 35))
    JAW_POINTS = list(range(0, 17))
    
    # Points used to line up the images
    ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
                    RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)
    
    # Points from the second image to overlay on the first. The convex hull of
    # each element will be overlaid
    OVERLAY_POINTS = [
        LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS
                      + RIGHT_BROW_POINTS,
        NOSE_POINTS + MOUTH_POINTS,
        ]
    
    # Amount of blur to use during color correction, as a fraction of the
    # pupillary distance
    COLOUR_CORRECT_BLUR_FRAC = 0.05
    
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(PREDICTOR_PATH)
    
    class TooManyFaces(Exception):
        pass
    
    class NoFaces(Exception):
        pass
    
    ## input: an image in the form of a numpy array
    ## return: a 68 * 2 element matrix, each row corresponding with
    ## the x, y coordintes of a pariticular feature point in the input image
    def get_landmarks(im):
        rects = detector(im, 1)
    
        if len(rects) > 1:
            raise TooManyFaces
        if len(rects) == 0:
            raise NoFaces
    
        # the feature extractor (predictor) requires a rough bounding box as input
        # to the algorithm. This is provided by a traditional face detector (
        # detector) which returns a list of rectangles, each of which corresponding
        # a face in the image
        return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])
    
    def annote_landmarks(im, landmarks):
        im = im.copy()
        for idx, point in enumerate(landmarks):
            pos = (point[0, 0], point[0, 1])
            cv2.putText(im, str(idx), pos,
                        fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
                        fontScale=0.4,
                        color=(0, 0, 255))
            cv2.circle(im, pos, 3, color=(0, 255, 255))
        return im
    
    def read_im_and_landmarks(fname):
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR,
                             im.shape[0] * SCALE_FACTOR))
        s = get_landmarks(im)
    
        return im, s
    
    def transformation_from_points(points1, points2):
        """
        Return an affine transformation [s * R | T] such that:
        
            sum || s*R*p1,i + T - p2,i||^2
            
        is minimized.
        """
    
        # Solve the procrustes problem by substracting centroids, scaling by the
        # standard deviation, and then using the SVD to calculate the rotation. See
        # the following for more details:
        # https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
    
        points1 = points1.astype(numpy.float64)
        points2 = points2.astype(numpy.float64)
    
        c1 = numpy.mean(points1, axis=0)
        c2 = numpy.mean(points2, axis=0)
        points1 -= c1
        points2 -= c2
    
        s1 = numpy.std(points1)
        s2 = numpy.std(points2)
        points1 /= s1
        points2 /= s2
    
        U, S, Vt = numpy.linalg.svd(points1.T * points2)
    
        # The R we seek is in fact the transpose of the one given by U * Vt. This
        # is because the above formulation assumes the matrix goes on the right
        # (with row vectors) where as our solution requires the matrix to be on the
        # left (with column vectors).
        R = (U * Vt).T
    
        return numpy.vstack([numpy.hstack(((s2 / s1) * R,
                                           c2.T - (s2 / s1) * R * c1.T)),
                             numpy.matrix([0., 0., 1.])])
    
    def draw_convex_hull(im, points, color):
        points = cv2.convexHull(points)
        cv2.fillConvexPoly(im, points, color=color)
    
    def get_face_mask(im, landmarks):
        im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
    
        for group in OVERLAY_POINTS:
            draw_convex_hull(im,
                             landmarks[group],
                             color=1)
    
        im = numpy.array([im, im, im]).transpose((1, 2, 0))
    
        im = (cv2.GaussianBlur(im, (FEATURE_AMOUNT, FEATURE_AMOUNT), 0) > 0) * 1.0
        im = cv2.GaussianBlur(im, (FEATURE_AMOUNT, FEATURE_AMOUNT), 0)
    
        return im
    
    def warp_im(im, M, dshape):
        output_im = numpy.zeros(dshape, dtype=im.dtype)
        cv2.warpAffine(im,
                       M[:2],
                       (dshape[1], dshape[0]),
                       dst=output_im,
                       borderMode=cv2.BORDER_TRANSPARENT,
                       flags=cv2.WARP_INVERSE_MAP)
        return output_im
    
    def correct_colors(im1, im2, landmarks1):
        blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
            numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
            numpy.mean(landmarks2[RIGHT_EYE_POINTS], axis=0))
        blur_amount = int(blur_amount)
        if blur_amount % 2 == 0:
            blur_amount += 1
    
        print blur_amount
    
        im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
        im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
    
        # Avoid divide-by-zero errors:
        im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
    
        return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
                im2_blur.astype(numpy.float64))
    
    im1, landmarks1 = read_im_and_landmarks("0.jpg")
    im2, landmarks2 = read_im_and_landmarks("1.jpg")
    
    # draw landmarks
    ##for i in landmarks2:
    ##    im2[i[0,1], i[0,0]] = [0,0,0]
    
    ##cv2.imshow("Image0", annote_landmarks(im1, landmarks1))
    ##cv2.waitKey(0)
    ##cv2.destroyWindow("Image0")
    ##cv2.imshow("Image1", annote_landmarks(im2, landmarks2))
    ##cv2.waitKey(0)
    
    M = transformation_from_points(landmarks1[ALIGN_POINTS],
                                   landmarks2[ALIGN_POINTS])
    
    mask = get_face_mask(im2, landmarks2)
    warped_mask = warp_im(mask, M, im1.shape)
    combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],
                              axis=0)
    
    warped_im2 = warp_im(im2, M, im1.shape)
    warped_corrected_im2 = correct_colors(im1, warped_im2, landmarks1)
    
    output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask
    
    cv2.imshow("Image1", output_im.astype(output_im.dtype)) # warp_im(im2, M, im1.shape)
    cv2.waitKey(0)
    cv2.destroyWindow("Image1")
    
    cv2.imwrite("output.jpg", output_im)

     

    千里之行,始于足下~
  • 相关阅读:
    使用Eolinker拓展API设计
    如何记录API
    API设计
    【翻译】通过API主导的集成来证明您的业务未来
    从状态库迁移分布系统建设方式
    PostgreSql 查询某个模式下面的所有表
    迁移状态库的地市区县信息
    测开和开发的难度对比
    yum源的三种搭建方式
    Harbor实现容器镜像仓库的管理和运维
  • 原文地址:https://www.cnblogs.com/wm123/p/5370064.html
Copyright © 2011-2022 走看看