zoukankan      html  css  js  c++  java
  • poj 1651 Multiplication Puzzle(区间dp)

    Description

    The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row. 

    The goal is to take cards in such order as to minimize the total number of scored points. 

    For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring 
    10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

    If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be 
    1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.

    Input

    The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

    Output

    Output must contain a single integer - the minimal score.

    Sample Input

    6

    10 1 50 50 20 5

    Sample Output

    3650

     

    题意:已知一行数字 现在问你除两端的数字不能抽取以外没,每次抽取一个数字的花费都是当前数字的权值分别乘上两边数字的权值 问最小花费是多少

    思路:我们不妨设dp[][]表示区间 i~j 中数字抽取的最小花费(i和j不能取)这样我们不难推出方程dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[107][107];
    int a[107];
    int main(){
        ios::sync_with_stdio(false);
        int n;
        while(cin>>n){
            memset(dp,inf,sizeof(dp));
            for(int i=1;i<=n;i++)
                cin>>a[i];
            for(int i=1;i<=n;i++){ //初始化 长度为1和2的区间都是不能合并的 花费为0 
                dp[i][i]=0;
                dp[i][i+1]=0;
            }
            for(int len=3;len<=n;len++){
                for(int i=1;i+len<=n+1;i++){
                    int j=i+len-1;
                    for(int k=i+1;k<j;k++)
                        dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);    
                }
                
            }
            cout<<dp[1][n]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    湘潭大学 Hurry Up 三分,求凹函数的最小值问题
    hdu 1166 线段树 单点修改 + 询问区间求和 (线段树模板)
    hdu 1166 树状数组(模板) 更改点值+求区间和
    getline
    poj 1873 The Fortified Forest 凸包+位运算枚举 world final 水题
    C# 代码操作XML(增、删、改)
    C# Socket服务端与客户端通信(包含大文件的断点传输)
    MD5 十六进制加密
    C# 面向对象——多态
    C# 面向对象——继承
  • 原文地址:https://www.cnblogs.com/wmj6/p/10705052.html
Copyright © 2011-2022 走看看