zoukankan      html  css  js  c++  java
  • hdu 3480 Division(四边形不等式优化)

    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2
    3 2
    1 2 4
    4 2
    4 7 10 1
     
    Sample Output
    Case 1: 1
    Case 2: 18
     
    题意:求n个数分成m个集合 要求花费的最小值
    思路:我们首先要求出状态转移方程dp[i][j]=min(dp[i][j],dp[k][j-1]+(a[i]-a[k+1])^2) 这里我们可以用四边形不等式优化(打表可知)
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[10007][5007]; //dp[i][j] 表示前i个人 分组成j组 
    int s[10007][5007]; //决策数组 
    int a[10007];
    int main(){
        ios::sync_with_stdio(false);
        int t;
        cin>>t;
        int w=0;
        while(t--){
            int n,m;
            cin>>n>>m;
            for(int i=1;i<=n;i++){
                cin>>a[i];
            }
            sort(a+1,a+1+n); //排序后满足一个区间内的值是首尾的差平方 
            for(int i=1;i<=n;i++){ //初始化边界 
                dp[i][1]=(a[i]-a[1])*(a[i]-a[1]); //前i个人分成1组 
                s[i][1]=1; //初始化决策数组的左边界 
            }
            for(int j=2;j<=m;j++){
                s[n+1][j]=n-1; //初始化决策数组的右边界 
                for(int i=n;i>=j;i--){
                    dp[i][j]=inf;
                    for(int k=s[i][j-1];k<=s[i+1][j];k++){ //四边形不等式优化 
                        if(dp[i][j]>dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1])){
                            dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
                            s[i][j]=k;
                        }
                    }
                }
            }    
            cout<<"Case "<<++w<<": ";
            cout<<dp[n][m]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    java excel转pdf 工具类
    java word转pdf 工具类
    如何向数据库中添加TIMESTAMP(6)类型的数据
    IE浏览器 div或者其他容器的height属性无效 滚动条问题解决办法
    ComboBox赋值ItemsSource数据源的时候会触发SelectionChanged改变事件的解决办法
    devexpress chart 散点图加载并分组显示(可以自定义颜色 同组中的点颜色相同)
    myEclipse mybatis自动生成工具xml配置
    MySQL日志简介
    存储引擎简介
    索引介绍
  • 原文地址:https://www.cnblogs.com/wmj6/p/10714337.html
Copyright © 2011-2022 走看看