zoukankan      html  css  js  c++  java
  • hdu 3480 Division(四边形不等式优化)

    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2
    3 2
    1 2 4
    4 2
    4 7 10 1
     
    Sample Output
    Case 1: 1
    Case 2: 18
     
    题意:求n个数分成m个集合 要求花费的最小值
    思路:我们首先要求出状态转移方程dp[i][j]=min(dp[i][j],dp[k][j-1]+(a[i]-a[k+1])^2) 这里我们可以用四边形不等式优化(打表可知)
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[10007][5007]; //dp[i][j] 表示前i个人 分组成j组 
    int s[10007][5007]; //决策数组 
    int a[10007];
    int main(){
        ios::sync_with_stdio(false);
        int t;
        cin>>t;
        int w=0;
        while(t--){
            int n,m;
            cin>>n>>m;
            for(int i=1;i<=n;i++){
                cin>>a[i];
            }
            sort(a+1,a+1+n); //排序后满足一个区间内的值是首尾的差平方 
            for(int i=1;i<=n;i++){ //初始化边界 
                dp[i][1]=(a[i]-a[1])*(a[i]-a[1]); //前i个人分成1组 
                s[i][1]=1; //初始化决策数组的左边界 
            }
            for(int j=2;j<=m;j++){
                s[n+1][j]=n-1; //初始化决策数组的右边界 
                for(int i=n;i>=j;i--){
                    dp[i][j]=inf;
                    for(int k=s[i][j-1];k<=s[i+1][j];k++){ //四边形不等式优化 
                        if(dp[i][j]>dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1])){
                            dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
                            s[i][j]=k;
                        }
                    }
                }
            }    
            cout<<"Case "<<++w<<": ";
            cout<<dp[n][m]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    PHP 小方法之 算生日
    PHP 小方法之 随机生成几位字符串
    PHP 小方法之 过滤参数
    PHP 小方法之 计算两个时间戳之间相差的日时分秒
    PHP 小方法之 仿百度蜘蛛采集
    PHP 小方法之 显示 今天 昨天 上周 上月 近三月 的时间
    PHP保留两位小数的几种方法
    mysql 常用命令(一)
    PHP数据库页面增删查
    PHP数据库登陆注册简单做法
  • 原文地址:https://www.cnblogs.com/wmj6/p/10714337.html
Copyright © 2011-2022 走看看