zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article(斜率优化dp)

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    思路:dp[i]=dp[j]+(sum[i]-sum[j])^2 是该题的状态转移方程 但是我们只是关注斜率的优化 用一个单调队列来维护
    由于这题的sum并是非严格的单调递增 所以我们不能用double来求斜率而是分别求dy和dx
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[500007];
    int n,m;
    int a[500007];
    int sum[500007];
    int q[500007];
    int getup(int j,int k){
        return dp[j]+sum[j]*sum[j]-dp[k]-sum[k]*sum[k];
    }
    int getdown(int j,int k){
        return sum[j]-sum[k];
    }
    int main(){
        ios::sync_with_stdio(false);
        while(cin>>n>>m){
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for(int i=1;i<=n;i++)
                cin>>a[i],sum[i]=sum[i-1]+a[i];
            int head,tail;
            head=tail=0;
            q[tail++]=0;
            for(int i=1;i<=n;i++){
                while(head+1<tail && getup(q[head+1],q[head])<=2*sum[i]*getdown(q[head+1],q[head]))
                    ++head;
                dp[i]=dp[q[head]]+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]])+m;
                while(head+1<tail && getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))
                    --tail;
                q[tail++]=i;
            }
            cout<<dp[n]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    django 单表操作
    爬虫学习
    DRF源码分析
    DRF权限和频率限制
    DRF版本和认证源码分析
    request高级部分
    多任务异步爬虫及selenium模块使用
    requests基本使用
    爬虫介绍及环境
    Flask生命周期的源码流程
  • 原文地址:https://www.cnblogs.com/wmj6/p/10758247.html
Copyright © 2011-2022 走看看