zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article(斜率优化dp)

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    思路:dp[i]=dp[j]+(sum[i]-sum[j])^2 是该题的状态转移方程 但是我们只是关注斜率的优化 用一个单调队列来维护
    由于这题的sum并是非严格的单调递增 所以我们不能用double来求斜率而是分别求dy和dx
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[500007];
    int n,m;
    int a[500007];
    int sum[500007];
    int q[500007];
    int getup(int j,int k){
        return dp[j]+sum[j]*sum[j]-dp[k]-sum[k]*sum[k];
    }
    int getdown(int j,int k){
        return sum[j]-sum[k];
    }
    int main(){
        ios::sync_with_stdio(false);
        while(cin>>n>>m){
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for(int i=1;i<=n;i++)
                cin>>a[i],sum[i]=sum[i-1]+a[i];
            int head,tail;
            head=tail=0;
            q[tail++]=0;
            for(int i=1;i<=n;i++){
                while(head+1<tail && getup(q[head+1],q[head])<=2*sum[i]*getdown(q[head+1],q[head]))
                    ++head;
                dp[i]=dp[q[head]]+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]])+m;
                while(head+1<tail && getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))
                    --tail;
                q[tail++]=i;
            }
            cout<<dp[n]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    沙漠之王(0/1分数规划+ 最小生成树)
    野餐规划(最小生成树性质)⭐
    走廊泼水节(最小生成树定理)⭐
    兄弟选择器+否定伪类
    子元素的伪类
    属性选择器
    伪元素
    伪类选择器
    Java连接Mysql由于版本更新报错
    Mac下安装SQL
  • 原文地址:https://www.cnblogs.com/wmj6/p/10758247.html
Copyright © 2011-2022 走看看