zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article(斜率优化dp)

    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
    思路:dp[i]=dp[j]+(sum[i]-sum[j])^2 是该题的状态转移方程 但是我们只是关注斜率的优化 用一个单调队列来维护
    由于这题的sum并是非严格的单调递增 所以我们不能用double来求斜率而是分别求dy和dx
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long int
    using namespace std;
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    int moth[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={1,0 ,0,1 ,-1,0 ,0,-1};
    int dirs[8][2]={1,0 ,0,1 ,-1,0 ,0,-1, -1,-1 ,-1,1 ,1,-1 ,1,1};
    const int inf=0x3f3f3f3f;
    const ll mod=1e9+7;
    int dp[500007];
    int n,m;
    int a[500007];
    int sum[500007];
    int q[500007];
    int getup(int j,int k){
        return dp[j]+sum[j]*sum[j]-dp[k]-sum[k]*sum[k];
    }
    int getdown(int j,int k){
        return sum[j]-sum[k];
    }
    int main(){
        ios::sync_with_stdio(false);
        while(cin>>n>>m){
            memset(dp,0,sizeof(dp));
            memset(sum,0,sizeof(sum));
            for(int i=1;i<=n;i++)
                cin>>a[i],sum[i]=sum[i-1]+a[i];
            int head,tail;
            head=tail=0;
            q[tail++]=0;
            for(int i=1;i<=n;i++){
                while(head+1<tail && getup(q[head+1],q[head])<=2*sum[i]*getdown(q[head+1],q[head]))
                    ++head;
                dp[i]=dp[q[head]]+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]])+m;
                while(head+1<tail && getup(i,q[tail-1])*getdown(q[tail-1],q[tail-2])<=getup(q[tail-1],q[tail-2])*getdown(i,q[tail-1]))
                    --tail;
                q[tail++]=i;
            }
            cout<<dp[n]<<endl;
        }
        return 0;
    }
  • 相关阅读:
    luogu_1659【题解】manacher 啦啦队排练
    manacher算法
    luogu_4503【题解】企鹅QQ 哈希
    luogu_3966【题解】单词 AC自动机
    字符串 AC自动机
    luogu_3275【题解】糖果 差分约束
    luogu_4568 飞行路线 分层图
    luogu_4551【题解】最长异或路径 trie树
    luogu_1041【题解】搜索 传染病控制
    [题解/模板]扫描线
  • 原文地址:https://www.cnblogs.com/wmj6/p/10758247.html
Copyright © 2011-2022 走看看