zoukankan      html  css  js  c++  java
  • The Preliminary Contest for ICPC Asia Nanjing 2019 A The beautiful values of the palace(树状数组+思维)

    Here is a square matrix of n * nnn, each lattice has its value (nn must be odd), and the center value is n * nnn. Its spiral decline along the center of the square matrix (the way of spiral decline is shown in the following figure:)

    The grid in the lower left corner is (1,1) and the grid in the upper right corner is (n , n)

    Now I can choose mm squares to build palaces, The beauty of each palace is equal to the digital sum of the value of the land which it is located. Such as (the land value is 123213123213,the beautiful values of the palace located on it is 1+2+3+2+1+3=121+2+3+2+1+3=12) (666666 -> 1818) (456456 ->1515)

    Next, we ask pp times to the sum of the beautiful values of the palace in the matrix where the lower left grid(x_1,y_1x1,y1), the upper right square (x_2,y_2x2,y2).

    Input

    The first line has only one number TT .Representing TT-group of test data (Tle 5)(T5)

    The next line is three number: n m pn m p

    The mm lines follow, each line contains two integers the square of the palace (x, y )(x,y)

    The pp lines follow, each line contains four integers : the lower left grid (x_1,y_1)(x1,y1) the upper right square (x_2,y_2)(x2,y2)

    Output

    Next, p_1+p_2...+p_Tp1+p2...+pT lines: Represent the answer in turn(n le 10^6)(m , p le 10^5)(n106)(m,p105)

    样例输入

    1
    3 4 4
    1 1
    2 2
    3 3
    2 3
    1 1 1 1
    2 2 3 3
    1 1 3 3
    1 2 2 3

    样例输出

    5
    18
    23
    17

    思路:

    题目的意思是给你一个n*n的矩阵  但是n很大 我们显然不能用前缀和数组来维护 但是考虑到点只有1e6个 所以我们可以用树状数组来维护y轴 那么这个其实是经典的二维偏序问题 最后我们要解决的其实就是螺旋矩阵的映射问题 对于(i,j)O(1)求出对应的权值:

    一种思路是求圈数k 然后k圈的第一个权值:F(k)=F(k-1)+4*(n-1-2*(k-1))

    我们可以推出递推式 F(k)=1+4*(k-1)*(n-k+1)

    最后下右和左上分别讨论一下即可

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 1e6+7;
    struct node{
        ll x,y,v,id;
        friend bool operator < (node a,node b){
            if(a.x!=b.x) return a.x<b.x;
            if(a.y!=b.y) return a.y<b.y;
            return a.id<b.id;
        }
    }p[N];
    ll getv(ll x,ll y,ll n){
        ll t=min(x,min(y,min(n-y+1,n-x+1)));
        ll res=1+4*(t-1)*(n-t+1);
        ll ans;
        if(x>=y) ans=res+2*(n-t+1)-x-y;
        else ans=res+2*(n-2*(t-1)-1)+x+y-2*t;
        ll xx=0;
        while(ans){
            xx+=(ans%10);
            ans/=10;
        }
        return xx;
    }
    ll C[N];
    ll lowbit(ll x){
        return x&(-x);
    }
    void add(ll x,ll v){
        while(x<=N){
            C[x]+=v;
            x+=lowbit(x);
        }
    }
    ll ask(ll x){
        ll ans=0;
        while(x){
            ans+=C[x];
            x-=lowbit(x);
        }
        return ans;
    }
    ll ans[N];
    int main(){
        int t; scanf("%d",&t);
        while(t--){
            memset(C,0,sizeof(C));
            memset(ans,0,sizeof(ans));
            ll n,m,pp; scanf("%lld%lld%lld",&n,&m,&pp);
            for(int i=0;i<m;i++){
                ll x,y; scanf("%lld%lld",&x,&y);
                p[i].x=x; p[i].y=y; p[i].v=getv(x,y,n); p[i].id=0;
            }
            int cnt=m-1;
            for(int i=1;i<=pp;i++){
                ll x1,y1,x2,y2;
                scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
                ++cnt;
                p[cnt].x=x1-1; p[cnt].y=y1-1; p[cnt].v=1; p[cnt].id=i;
                ++cnt;
                p[cnt].x=x2; p[cnt].y=y2; p[cnt].v=1; p[cnt].id=i;
                ++cnt;
                p[cnt].x=x1-1; p[cnt].y=y2; p[cnt].v=0; p[cnt].id=i;
                ++cnt;
                p[cnt].x=x2; p[cnt].y=y1-1; p[cnt].v=0; p[cnt].id=i;
            }
            sort(p,p+cnt+1);
            for(int i=0;i<=cnt;i++){
                if(p[i].id){
                    if(p[i].v==1)
                    ans[p[i].id]+=ask(p[i].y);
                    else ans[p[i].id]-=ask(p[i].y);
                }else{
                    add(p[i].y,p[i].v);
                }
            }
            for(int i=1;i<=pp;i++){
                printf("%lld
    ",ans[i]);
            }
        }
    }
    View Code
  • 相关阅读:
    VFIO PF SRIOV IOMMU UIO概念解释、关联
    集群节点间网络通信TIPC
    1. C语言中的数据结构.md
    第三讲. COTS包交换介绍
    SYSTick 定时器
    热电偶基础知识介绍-04
    附录1· 初识Linux操作系统
    热电偶冷端补偿
    珍惜是最宝贵的财富。
    CSS 设置标题文字只显示一行,多余显示省略号
  • 原文地址:https://www.cnblogs.com/wmj6/p/11468845.html
Copyright © 2011-2022 走看看