zoukankan      html  css  js  c++  java
  • hdu 1541 (cdq分治)

    Problem Description
    Astronomers often examine star maps where stars are represented by points on a plane and each star has Cartesian coordinates. Let the level of a star be an amount of the stars that are not higher and not to the right of the given star. Astronomers want to know the distribution of the levels of the stars. 



    For example, look at the map shown on the figure above. Level of the star number 5 is equal to 3 (it's formed by three stars with a numbers 1, 2 and 4). And the levels of the stars numbered by 2 and 4 are 1. At this map there are only one star of the level 0, two stars of the level 1, one star of the level 2, and one star of the level 3. 

    You are to write a program that will count the amounts of the stars of each level on a given map.
     
    Input
    The first line of the input file contains a number of stars N (1<=N<=15000). The following N lines describe coordinates of stars (two integers X and Y per line separated by a space, 0<=X,Y<=32000). There can be only one star at one point of the plane. Stars are listed in ascending order of Y coordinate. Stars with equal Y coordinates are listed in ascending order of X coordinate.
     
    Output
    The output should contain N lines, one number per line. The first line contains amount of stars of the level 0, the second does amount of stars of the level 1 and so on, the last line contains amount of stars of the level N-1.
     
    Sample Input
    5 1 1 5 1 7 1 3 3 5 5
     
    Sample Output
    1 2 1 1 0
     

    思路:

    排序以后把在第二维上分治

    #include <bits/stdc++.h>
    using namespace std;
    const double pi = acos(-1.0);
    const int N = 1e5+7;
    const int inf = 0x3f3f3f3f;
    const double eps = 1e-6;
    typedef long long ll;
    const ll mod = 1e9+7;
    struct node{
        int x,y,id;
        friend bool operator < (node a,node b){
            if(a.x!=b.x) return a.x<b.x;
            return a.y<b.y;
        }
    }p[N],a[N];
    int f[N];
    int ans[N];
    void cdq(int l,int r){
        if(l==r) return ;
        int mid=(l+r)>>1;
        cdq(l,mid); cdq(mid+1,r);
        int i=l,j=mid+1,cnt=l;
        while(i<=mid&&j<=r){
            if(p[i].y<=p[j].y){
                a[cnt++]=p[i++];
            }else{
                f[p[j].id]+=(i-l);
                a[cnt++]=p[j++];
            }
        }
        while(i<=mid) a[cnt++]=p[i++];
        while(j<=r){
            f[p[j].id]+=(i-l);
            a[cnt++]=p[j++];
        } 
        for(int k=l;k<=r;k++) p[k]=a[k];
    }
    int main(){
    //    ios::sync_with_stdio(false);
    //    cin.tie(0); cout.tie(0);
        int n; 
        while(~scanf("%d",&n)){
            memset(f,0,sizeof(f));
            memset(ans,0,sizeof(ans));
            for(int i=1;i<=n;i++){
                int x,y; scanf("%d%d",&x,&y);
                p[i]=node{x,y,i};
            }
            sort(p+1,p+n+1);
            cdq(1,n);
            for(int i=1;i<=n;i++)
                ans[f[i]]++;
            for(int i=0;i<n;i++)
                printf("%d
    ",ans[i]);    
        }
            return 0;
    }
    View Code
  • 相关阅读:
    linux配置ssh互信
    查看LINUX进程内存占用情况
    RSync实现文件备份同步详解
    rsync同步完整配置
    Linux下利用rsync实现多服务器文件同步
    Linux下的split 命令(将一个大文件根据行数平均分成若干个小文件)
    Linux大文件分割split和合并cat使用方法
    Linux计划任务入门详解
    一步一步理解最大熵模型
    一步一步理解word2Vec
  • 原文地址:https://www.cnblogs.com/wmj6/p/11477436.html
Copyright © 2011-2022 走看看