zoukankan      html  css  js  c++  java
  • UVALive7042(博弈论)

    题意:

      Bob和Alice在有向图内玩游戏,n个顶点,m条边。

      每人一颗棋子,初始位置分别是x,y。

      Bob先手,轮流操作,每次只能走一条有向边。

      结束条件: 1.不能操作的人输 2.两个棋子重合Bob输 3.游戏没有尽头Alice输

      问 Bob 能不能赢?

      2 <= n <= 100. 1 <= m <= n <= n*(n-1) 1 <= x , y <= n, x != y.

    分析:

      设计状态[x][y][0/1] 表示Alice的棋子在x,Bob的棋子在y,0表示Alice下次先手,1表示Bob下次先手

      那么f[x][y][0/1]就表示该状态对于Bob来说是必胜状态还是必败状态

      考虑到Bob赢的特殊规则:游戏没有尽头

      那么对于我们所有的状态,我们可以初始默认全部都是1

      然后挑出那些刚开始显而易见的必败态(博弈树的叶子节点),从这些必败态开始扩展,能扩展到的节点都是必败态节点,这样用队列扩展结束后,每个点的胜败就知道了

      刚开始必败态:f[x][x][0/1](棋子重合Bob输) f[i][x][1] (x没有出边,Bob无法走子,输)

      考虑f[i][j][0]的转移:

        既然通过f[i][j][0]转移,就说明该状态一定是Bob的必败态,而且这个状态是Alice先手,那么说明这个状态的父节点是Bob先手

        Bob从f[i'][j][1]走到f[i][j][0],那么现在问题就是f[i'][j][1]是不是必败态呢?

        通过博弈的基础知识易得,Bob先手走如果走到这个必败节点,那么就必须是Bob能走到的节点全都是必败节点!

        在这里,我们可以把状态节点f[i'][j][1]的访问次数+1,表示f[i'][j][1]的一条出边对应的节点是必败节点

        注意f[i'][j][1]的出边数量是i'点的出度!所以,如果某次扩展,f[i'][j][1]的访问次数正好为i'点的度数,那么说明这个状态节点的所有的子节点都是Bob必败态,所以该节点也是Bob必败态

      考虑f[i][j][1]的转移

        既然通过f[i][j][1]转移,就说明该状态一定是Bob的必败态,而且这个状态是Bob先手,那么说明这个状态的父节点是Alice先手

        既然是Alice先手,能走到一个Bob必败态,那么Alice肯定要这样选择,所以直接f[i][j'][0]是必败态

      注意bfs过程中,对状态判重

      最后结果就是f[Alice][Bob][1]

  • 相关阅读:
    nginx 配置https 负载均衡
    MyCAT+MySQL搭建高可用企业级数据库集群视频课程
    Java数字签名算法--RSA
    bootstrap在iframe框架中实现由子页面在顶级页面打开模态框(modal)
    bootstrap-treeview 自定义实现双击事件
    Java多线程之内存可见性
    Java实现责任链模式
    JVM(HotSpot) 7种垃圾收集器的特点及使用场景
    jQuery的noConflict以及插件扩展
    JavaScript事件漫谈
  • 原文地址:https://www.cnblogs.com/wmrv587/p/6653779.html
Copyright © 2011-2022 走看看