zoukankan      html  css  js  c++  java
  • HDU 5344 MZL's xor (多校)[补7月28]

    MZL's xor

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 249    Accepted Submission(s): 187


    Problem Description
    MZL loves xor very much.Now he gets an array A.The length of A is n.He wants to know the xor of all (Ai+Aj)(1i,jn)
    The xor of an array B is defined as B1 xor B2...xor Bn
     
    Input
    Multiple test cases, the first line contains an integer T(no more than 20), indicating the number of cases.
    Each test case contains four integers:n,m,z,l
    A1=0,Ai=(Ai1m+z) mod l
    1m,z,l5105,n=5105
     
    Output
    For every test.print the answer.
     
    Sample Input
    2 3 5 5 7 6 8 8 9
     
    Sample Output
    14 16
     
    Source
     
    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5352 5351 5350 5349 5348
     
    题意理解了半天,他说要把所有的(Ai+Aj)拿来异或,Ai+Aj和Aj+Ai都算的,所以只要i和j
    不一样,(Ai+Aj)XOR(Aj+Ai)一定是0,这些都不用考虑了,只有i=j的才考虑,所以把所有的Ai拿来乘以2,再异或就可以了。
     1 #include<queue>
     2 #include<math.h>
     3 #include<stdio.h>
     4 #include<string.h>
     5 #include<iostream>
     6 #include<algorithm>
     7 using namespace std;
     8 #define N 1234567
     9 #define M 1234
    10 
    11 long long a[N];
    12 long long  b[N];
    13 int ma,n,num;
    14 int main()
    15 {
    16     a[1]=0;
    17     int t;cin>>t;
    18     while(t--)
    19     {
    20         int n,m,z,l;
    21         scanf("%d%d%d%d",&n,&m,&z,&l);
    22         for(int i=2;i<=n;i++)
    23             a[i]=(a[i-1]*m+z)%l;
    24 
    25         int c=a[1]*2;
    26         for(int i=1;i<=n;i++)
    27         {
    28             c=c^a[i]*2;
    29         }
    30         printf("%d
    ",c);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    mysql实现主从复制
    go get时候 timeout
    linux 修改/etc/profile文件之后 没有效果
    初试 laravel
    php 实现单个大文件(视频)的 断点上传
    UEditor图片左对齐右对齐 要的作用显示之后 保存之后没有效果
    docker 实现 mysql+nginx+php
    redis
    easyPoi框架的excel导入导出
    从生产计划的角度认识精益生产
  • 原文地址:https://www.cnblogs.com/wmxl/p/4703125.html
Copyright © 2011-2022 走看看