zoukankan      html  css  js  c++  java
  • 实验三 朴素贝叶斯算法及应用

    | 这个作业属于哪个课程 | 机器学习实验 |
    | ---- | ---- | ---- |
    | 这个作业要求在哪里 | 朴素贝叶斯算法及应用 |
    | 学号 | 3180701210 |

    一、实验目的
    1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
    2.掌握常见的高斯模型,多项式模型和伯努利模型;
    3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
    4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
    二、实验要求
    1.实现高斯朴素贝叶斯算法。
    2.熟悉sklearn库中的朴素贝叶斯算法;
    3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
    4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
    三、实验报告内容
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
    5.讨论朴素贝叶斯算法的优缺点。
    四、实验代码
    1.

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    
    # data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = [
            'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
        ]
        data = np.array(df.iloc[:100, :])
        # print(data)
        return data[:, :-1], data[:, -1]
    
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    
    X_test[0], y_test[0]
    
    class NaiveBayes:
        def __init__(self):
            self.model = None
        # 数学期望
        @staticmethod
        def mean(X):
            return sum(X) / float(len(X))
        # 标准差(方差)
        def stdev(self, X):
            avg = self.mean(X)
            return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
        # 概率密度函数
        def gaussian_probability(self, x, mean, stdev):
            exponent = math.exp(-(math.pow(x - mean, 2) /
                                  (2 * math.pow(stdev, 2))))
            return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
        # 处理X_train
        def summarize(self, train_data):
            summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
            return summaries
        # 分类别求出数学期望和标准差
        def fit(self, X, y):
            labels = list(set(y))
            data = {label: [] for label in labels}
            for f, label in zip(X, y):
                data[label].append(f)
            self.model = {
                label: self.summarize(value)
                for label, value in data.items()
            }
            return 'gaussianNB train done!'
        # 计算概率
        def calculate_probabilities(self, input_data):
            # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
            # input_data:[1.1, 2.2]
            probabilities = {}
            for label, value in self.model.items():
                probabilities[label] = 1
                for i in range(len(value)):
                    mean, stdev = value[i]
                    probabilities[label] *= self.gaussian_probability(
                        input_data[i], mean, stdev)
            return probabilities
        # 类别
        def predict(self, X_test):
            # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
            label = sorted(
                self.calculate_probabilities(X_test).items(),
                key=lambda x: x[-1])[-1][0]
            return label
        def score(self, X_test, y_test):
            right = 0
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right += 1
            return right / float(len(X_test))
    
    model = NaiveBayes()
    
    model.fit(X_train, y_train)
    
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    
    model.score(X_test, y_test)
    
    from sklearn.naive_bayes import GaussianNB
    
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    
    clf.score(X_test, y_test)
    
    clf.predict([[4.4, 3.2, 1.3, 0.2]])
    
    from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
    

    五、运行截图
    1.


    实验小结
    朴素贝叶斯模型发源于古典数学理论,其对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。

  • 相关阅读:
    Serialize and Deserialize Binary Tree
    sliding window substring problem汇总贴
    10. Regular Expression Matching
    《深入理解计算机系统》(CSAPP)读书笔记 —— 第七章 链接
    程序员如何写一份合格的简历?(附简历模版)
    9个提高代码运行效率的小技巧你知道几个?
    《深入理解计算机系统》(CSAPP)读书笔记 —— 第六章 存储器层次结构
    24张图7000字详解计算机中的高速缓存
    《深入理解计算机系统》(CSAPP)实验四 —— Attack Lab
    《深入理解计算机系统》(CSAPP)读书笔记 —— 第五章 优化程序性能
  • 原文地址:https://www.cnblogs.com/wo201314/p/14928870.html
Copyright © 2011-2022 走看看