zoukankan      html  css  js  c++  java
  • 堆栈

    1.堆栈原理:先进后出,主要这种思想,对于堆栈而言,主要运用在二叉树的中序遍历,前序遍历;在递归中需要记录子程序的值和运行方式;深度DFS;中断处理

    最重点问题:Mouse 走迷宫问题:堆栈在其中最重要作用记录走过的路径,当走到死胡同时候在依次回溯到上一个分叉点,堆栈中最终要点在于记录在正确路径上的分叉点。

    package Static;
    
    public class CH04_5 {
    
        public static int Exitx=8;
        public static int Exity=10;
        
        public static int [][]MAZE={{1,1,1,1,1,1,1,1,1,1,1,1},
                                    {1,0,0,0,1,1,1,1,1,1,1,1},
                                    {1,1,1,0,1,1,0,0,0,0,1,1},
                                    {1,1,1,0,1,1,0,1,1,0,1,1},
                                    {1,1,1,0,0,0,0,1,1,0,1,1},
                                    {1,1,1,0,1,1,0,1,1,0,1,1},
                                    {1,1,1,0,1,1,0,1,1,0,1,1},
                                    {1,1,1,1,1,1,0,1,1,0,1,1},
                                    {1,1,0,0,0,0,0,0,1,0,0,1},
                                    {1,1,1,1,1,1,1,1,1,1,1,1}};
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            //第一步选择方向,同时将已经走过路径记录为2
            TraceRecord path=new TraceRecord();
            int x=1,y=1;//入口在1,1位置上
            
            //Mouse 不断地进行遍历
            while(x<=Exitx && y<=Exity)
            {
                MAZE[x][y]=2;//走过路程在用2表示
                if(MAZE[x-1][y]==0)
                {
                    x-=1;
                    path.insert(x, y);
                }
                else if(MAZE[x+1][y]==0)
                {
                    x+=1;
                    path.insert(x, y);
                }
                else if(MAZE[x][y-1]==0)
                {
                    y-=1;
                    path.insert(x, y);
                }
                else if(MAZE[x][y+1]==0)
                {
                    y+=1;
                    path.insert(x, y);
                }
                else if(chkExit(x,y,Exitx,Exity)==1)
                {
                    break;//是否到了死胡同
                }
                else{
                    MAZE[x][y]=2;
                    path.delet();
                    x=path.last.x;
                    y=path.last.y;
                }
            }
            for(int i=0;i<10;i++)
            {
                for (int j=0;j<12;j++)
                {
                    System.out.print(MAZE[i][j]);
                }
                System.out.println();
            }
        }
        public static int chkExit(int x,int y,int Ex,int Ey)
        {
            //判断其刚好到了出口位置,不是的话在死胡同直接返回
            if(x==Ex && y==Ey)
            {
                if(MAZE[x-1][y]==1 || MAZE[x+1][y]==1 || MAZE[x][y-1]==1 || MAZE[x][y+1]==2)
                    return 1;
                if(MAZE[x-1][y]==1 || MAZE[x+1][y]==1 || MAZE[x][y-1]==2 || MAZE[x][y+1]==1)
                    return 1;
                if(MAZE[x-1][y]==1 || MAZE[x+1][y]==2 || MAZE[x][y-1]==1 || MAZE[x][y+1]==1)
                    return 1;
                if(MAZE[x-1][y]==2 || MAZE[x+1][y]==1 || MAZE[x][y-1]==1 || MAZE[x][y+1]==1)
                    return 1;
            }
            //d都不符合条件直接返回
            return 0;
            
        }
    
    }

     八皇后问题:

    #include<cstdio>
    #include<iostream>
    using namespace std;
    #define EIGHT 8
    //回溯法模拟八皇后问题,新放置位置与前位置进行比较
    int Queen[EIGHT];int numble=0;
    //Queen[x]放的行的位置
    void print_stack()
    {
        int x=0,y=0;numble+=1;
        cout<<"八皇后的解"<<numble<<endl;
        for (x=0;x<EIGHT;x++)
        {
            for(y=0;y<EIGHT;y++)
                if(x==Queen[y])
                    cout<<"<*>"<<" ";
                else
                    cout<<"<->"<<" ";
            cout<<endl;
    
        }
    
    }
    int attack(int row, int col)
    {
        int alt=0;int i=0;
        int off_row=0,off_col=0;//判断其是否在对角线上
        while(i<col && alt!=1)
        {
            off_row=abs(Queen[i]-row);
            off_col=abs(i-col);
            if(off_col==off_row || row==Queen[i])
                
                {    alt=1;
                        break;
               }
            i++;
    
        }
        return alt;
    }
    void Trace(int value)
    {
        //每一行只能放置一位皇后,新来的皇后与老皇后进行比较
        //只有当找到位置才能够在往新的一行放置新的皇后
        int i=0;
        while(i<EIGHT)
        {
            //判断新放的位置是否会受到攻击
            if(attack(i,value)!=1)
            {
                Queen[value]=i;
                if(value==7)
                {
                    print_stack();
                }
                else
                        {    Trace(value+1);
                }
            }
            i++;
        }
    }
    
    int main()
    {
        Queen[0]=0;
        Trace(0);
        return 0;
    }
  • 相关阅读:
    Serialization and deserialization are bottlenecks in parallel and distributed computing, especially in machine learning applications with large objects and large quantities of data.
    Introduction to the Standard Directory Layout
    import 原理 及 导入 自定义、第三方 包
    403 'Forbidden'
    https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-2.1.1-linux-x86_64.tar.bz2
    These interactions can be expressed as complicated, large scale graphs. Mining data requires a distributed data processing engine
    mysqldump --flush-logs
    mysql dump 参数
    mysql dump 参数
    如果是在有master上开启了该参数,记得在slave端也要开启这个参数(salve需要stop后再重新start),否则在master上创建函数会导致replaction中断。
  • 原文地址:https://www.cnblogs.com/woainifanfan/p/6017611.html
Copyright © 2011-2022 走看看