深度优先搜素一个作用 : 找出一幅图中连通分量
1 package Graph; 2 /**深度优先遍历 递归的遍历 类似从根结点一直遍历到整副图*/ 3 public class DepthFirstPath { 4 public Graph G; 5 public boolean [] marked; 6 private int[] edgeTo;// 记录根结点到其点顶点的路径 7 private int startpoint; 8 public DepthFirstPath(Graph G,int s) 9 { 10 this.G=G; 11 marked=new boolean[G.Vertex];//结点起始点从1开始 12 edgeTo=new int[G.Vertex]; 13 this.startpoint=s; 14 dfs(G,s); 15 PrintPath(edgeTo); 16 } 17 public void PrintPath(int [] edgepath) 18 { 19 System.out.println(); 20 for (int i=edgepath.length-1;i>=0;i--) 21 { 22 System.out.print(i + "顶点到 0结点路径"+" "); 23 for(int x=i;x!=startpoint;x=edgepath[x] ) 24 { //反向遍历 25 System.out.print(x +" "); 26 27 } 28 System.out.print(startpoint); 29 System.out.println(); 30 } 31 System.out.println(); 32 } 33 public void dfs(Graph G, int w) 34 { 35 marked[w]=true; 36 EdgeNode edge=G.graph[w].firstedge; 37 while(edge!=null) 38 { 39 if(!marked[edge.adjvex]) 40 41 { 42 dfs(G,edge.adjvex); 43 edgeTo[edge.adjvex]=w;// 他的入度结点是 44 System.out.print(edge.adjvex + " "); 45 } 46 edge=edge.nextedge; 47 } 48 49 50 } 51 public static void main(String[] args) { 52 // TODO Auto-generated method stub 53 int array[][]={{0,1},{0,2},{0,5},{1,2},{5,3},{3,2},{3,4}}; 54 int []weight={1,2,3,4,5,6,7}; 55 int []vNum={0,1,2,3,4,5}; 56 Graph G=new Graph(vNum,weight.length,array,weight); 57 G.PrintGraph(G.graph); 58 DepthFirstPath d=new DepthFirstPath (G,0); 59 60 61 }
public void pathTo(int v,int start)
{
/**打印 一结点到其他结点上的路径*/
Stack<Integer> path=new Stack<Integer>();
for(int i=v;i!=startpoint;i=edgeTo[i])
path.push(i);
path.push(start);
while(!path.isEmpty())
{
System.out.print(path.pop() +" ");
}
}
62 63 }
0-->(1,1) (2,2) (5,3) 1-->(2,4) (0,1) 2-->(0,2) (1,4) (3,6) 3-->(2,6) (4,7) (5,5) 4-->(3,7) 5-->(3,5) (0,3) 4 5 3 2 1 5顶点到 0结点路径 5 3 2 1 0 4顶点到 0结点路径 4 3 2 1 0 3顶点到 0结点路径 3 2 1 0 2顶点到 0结点路径 2 1 0 1顶点到 0结点路径 1 0 0顶点到 0结点路径 0