zoukankan      html  css  js  c++  java
  • 获取图片某点或区域的颜色

    - (UIColor*) getPixelColorAtLocation:(CGPoint)point {

    UIColor* color = nil;

    CGImageRef inImage = self.image.CGImage;

    // Create off screen bitmap context to draw the image into. Format ARGB is 4 bytes for each pixel: Alpa, Red, Green, Blue

    CGContextRef cgctx = [self createARGBBitmapContextFromImage:inImage];

    if (cgctx == NULL) { return nil; /* error */ }

    size_t w = CGImageGetWidth(inImage);

    size_t h = CGImageGetHeight(inImage);

    CGRect rect = {{0,0},{w,h}}; 

    // Draw the image to the bitmap context. Once we draw, the memory 

    // allocated for the context for rendering will then contain the 

    // raw image data in the specified color space.

    CGContextDrawImage(cgctx, rect, inImage); 

    // Now we can get a pointer to the image data associated with the bitmap

    // context.

    unsigned char* data = CGBitmapContextGetData (cgctx);

    if (data != NULL) {

    // Declare the number of bytes per row. Each pixel in the bitmap in this

    // example is represented by 4 bytes; 8 bits each of red, green, blue, and

    // alpha.

    size_t bitmapBytesPerRow   = (w * 4);

    size_t bitmapByteCount     = (bitmapBytesPerRow * h);

    //offset locates the pixel in the data from x,y. 

    //4 for 4 bytes of data per pixel, w is width of one row of data.

    @try {

    int offset = 4*((w*round(point.y))+round(point.x));

    if (offset < bitmapByteCount) 

    {

    int alpha =  data[offset]; 

    int red = data[offset+1]; 

    int green = data[offset+2]; 

    int blue = data[offset+3]; 

    color = [UIColor colorWithRed:(red/255.0f) green:(green/255.0f) blue:(blue/255.0f) alpha:(alpha/255.0f)];

    }

    }

    @catch (NSException * e) {

    NSLog(@"%@",[e reason]);

    }

    @finally {

    }

    }

    // When finished, release the context

    CGContextRelease(cgctx); 

    // Free image data memory for the context

    if (data) { free(data); }

    return color;

    }

    - (CGContextRef) createARGBBitmapContextFromImage:(CGImageRef) inImage {

    CGContextRef    context = NULL;

    CGColorSpaceRef colorSpace;

    void *          bitmapData;

    int             bitmapByteCount;

    int             bitmapBytesPerRow;

    // Get image width, height. We'll use the entire image.

    size_t pixelsWide = CGImageGetWidth(inImage);

    size_t pixelsHigh = CGImageGetHeight(inImage);

    // Declare the number of bytes per row. Each pixel in the bitmap in this

    // example is represented by 4 bytes; 8 bits each of red, green, blue, and

    // alpha.

    bitmapBytesPerRow   = (pixelsWide * 4);

    bitmapByteCount     = (bitmapBytesPerRow * pixelsHigh);

    // Use the generic RGB color space.

    colorSpace = CGColorSpaceCreateDeviceRGB();

    if (colorSpace == NULL)

    {

    fprintf(stderr, "Error allocating color space ");

            CGColorSpaceRelease( colorSpace );

    return NULL;

    }

    // Allocate memory for image data. This is the destination in memory

    // where any drawing to the bitmap context will be rendered.

    bitmapData = malloc( bitmapByteCount );

    if (bitmapData == NULL) 

    {

    fprintf (stderr, "Memory not allocated!");

    CGColorSpaceRelease( colorSpace );

    return NULL;

    }

    // Create the bitmap context. We want pre-multiplied ARGB, 8-bits 

    // per component. Regardless of what the source image format is 

    // (CMYK, Grayscale, and so on) it will be converted over to the format

    // specified here by CGBitmapContextCreate. kCGImageAlphaPremultipliedFirst

    context = CGBitmapContextCreate (bitmapData,pixelsWide,pixelsHigh,8,// bits per component

                                         bitmapBytesPerRow,colorSpace,kCGBitmapByteOrderDefault | kCGImageAlphaPremultipliedFirst);

    if (context == NULL)

    {

    free (bitmapData);

    fprintf (stderr, "Context not created!");

    }

    // Make sure and release colorspace before returning

    CGColorSpaceRelease( colorSpace );

    return context;

    }

  • 相关阅读:
    Unity 简易的UI背景昼夜轮替效果
    UE4 射线拾取&三维画线
    基于地产的消费生态群构想
    Unity插件
    Android5.1设备无法识别exFAT文件系统的64G TF卡问题
    MBR和GPT概要学习
    Linux驱动基础:MSM平台AP/CP通信机制
    使用UE4/Unity创建VR项目
    Unity UGUI基础之InputField
    Android组件内核之间组件间通信方案(四)下篇
  • 原文地址:https://www.cnblogs.com/woaixixi/p/4767743.html
Copyright © 2011-2022 走看看