zoukankan      html  css  js  c++  java
  • python库skimage 给灰度图像染色

    灰度图像染成红色和黄色

    # 1.将灰度图像转换为RGB图像
    image = color.gray2rgb(grayscale_image)
    # 2.保留红色分量和黄色分量
    red_multiplier = [1, 0, 0]
    yellow_multiplier = [1, 1, 0]
    # 3.显示图像
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                                   sharex=True, sharey=True)
    ax1.imshow(red_multiplier * image)
    ax2.imshow(yellow_multiplier * image)
    

    左图:灰度图像染成了红色;右图:灰度图像染成了黄色

    HSV图像,H从0到1表示的颜色

    hue_gradient = np.linspace(0, 1)
    # print(hue_gradient.shape) # output:(50,)
    hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
    hsv[:, :, 0] = hue_gradient
    
    all_hues = color.hsv2rgb(hsv)
    
    fig, ax = plt.subplots(figsize=(5, 2))
    # Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
    ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
    ax.set_axis_off()
    

    HSV颜色空间H从0到1表示的颜色

    将灰度图像染成不同的颜色

    hue_rotations = np.linspace(0, 1, 6)
    
    fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)
    
    for ax, hue in zip(axes.flat, hue_rotations):
        # Turn down the saturation to give it that vintage look.
        tinted_image = colorize(image, hue, saturation=0.3)
        ax.imshow(tinted_image, vmin=0, vmax=1)
        ax.set_axis_off()
    fig.tight_layout()
    

    不同的色调染色后的图像

    完整代码

    """
    =========================
    Tinting gray-scale images
    =========================
    
    It can be useful to artificially tint an image with some color, either to
    highlight particular regions of an image or maybe just to liven up a grayscale
    image. This example demonstrates image-tinting by scaling RGB values and by
    adjusting colors in the HSV color-space.
    
    In 2D, color images are often represented in RGB---3 layers of 2D arrays, where
    the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The
    simplest way of getting a tinted image is to set each RGB channel to the
    grayscale image scaled by a different multiplier for each channel. For example,
    multiplying the green and blue channels by 0 leaves only the red channel and
    produces a bright red image. Similarly, zeroing-out the blue channel leaves
    only the red and green channels, which combine to form yellow.
    """
    
    import matplotlib.pyplot as plt
    from skimage import data
    from skimage import color
    from skimage import img_as_float
    
    grayscale_image = img_as_float(data.camera()[::2, ::2])
    image = color.gray2rgb(grayscale_image)
    
    red_multiplier = [1, 0, 0]
    yellow_multiplier = [1, 1, 0]
    
    fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4),
                                   sharex=True, sharey=True)
    ax1.imshow(red_multiplier * image)
    ax2.imshow(yellow_multiplier * image)
    
    ######################################################################
    # In many cases, dealing with RGB values may not be ideal. Because of that,
    # there are many other `color spaces`_ in which you can represent a color
    # image. One popular color space is called HSV, which represents hue (~the
    # color), saturation (~colorfulness), and value (~brightness). For example, a
    # color (hue) might be green, but its saturation is how intense that green is
    # ---where olive is on the low end and neon on the high end.
    #
    # In some implementations, the hue in HSV goes from 0 to 360, since hues wrap
    # around in a circle. In scikit-image, however, hues are float values from 0
    # to 1, so that hue, saturation, and value all share the same scale.
    #
    # .. _color spaces:
    #     https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
    #
    # Below, we plot a linear gradient in the hue, with the saturation and value
    # turned all the way up:
    import numpy as np
    
    hue_gradient = np.linspace(0, 1)
    # print(hue_gradient.shape) # output:(50,)
    hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float)
    hsv[:, :, 0] = hue_gradient
    
    all_hues = color.hsv2rgb(hsv)
    
    fig, ax = plt.subplots(figsize=(5, 2))
    # Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio.
    ax.imshow(all_hues, extent=(0, 1, 0, 0.2))
    ax.set_axis_off()
    
    ######################################################################
    # Notice how the colors at the far left and far right are the same. That
    # reflects the fact that the hues wrap around like the color wheel (see HSV_
    # for more info).
    #
    # .. _HSV: https://en.wikipedia.org/wiki/HSL_and_HSV
    #
    # Now, let's create a little utility function to take an RGB image and:
    #
    # 1. Transform the RGB image to HSV 2. Set the hue and saturation 3.
    # Transform the HSV image back to RGB
    
    
    def colorize(image, hue, saturation=1):
        """ Add color of the given hue to an RGB image.
    
        By default, set the saturation to 1 so that the colors pop!
        """
        hsv = color.rgb2hsv(image)
        hsv[:, :, 1] = saturation
        hsv[:, :, 0] = hue
        return color.hsv2rgb(hsv)
    
    
    ######################################################################
    # Notice that we need to bump up the saturation; images with zero saturation
    # are grayscale, so we need to a non-zero value to actually see the color
    # we've set.
    #
    # Using the function above, we plot six images with a linear gradient in the
    # hue and a non-zero saturation:
    
    hue_rotations = np.linspace(0, 1, 6)
    
    fig, axes = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True)
    
    for ax, hue in zip(axes.flat, hue_rotations):
        # Turn down the saturation to give it that vintage look.
        tinted_image = colorize(image, hue, saturation=0.3)
        ax.imshow(tinted_image, vmin=0, vmax=1)
        ax.set_axis_off()
    fig.tight_layout()
    
    ######################################################################
    # You can combine this tinting effect with numpy slicing and fancy-indexing
    # to selectively tint your images. In the example below, we set the hue of
    # some rectangles using slicing and scale the RGB values of some pixels found
    # by thresholding. In practice, you might want to define a region for tinting
    # based on segmentation results or blob detection methods.
    
    from skimage.filters import rank
    
    # Square regions defined as slices over the first two dimensions.
    top_left = (slice(100),) * 2
    bottom_right = (slice(-100, None),) * 2
    
    sliced_image = image.copy()
    sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5)
    sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5)
    
    # Create a mask selecting regions with interesting texture.
    noisy = rank.entropy(grayscale_image, np.ones((9, 9)))
    textured_regions = noisy > 4
    # Note that using `colorize` here is a bit more difficult, since `rgb2hsv`
    # expects an RGB image (height x width x channel), but fancy-indexing returns
    # a set of RGB pixels (# pixels x channel).
    masked_image = image.copy()
    masked_image[textured_regions, :] *= red_multiplier
    
    fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=(8, 4),
                                   sharex=True, sharey=True)
    ax1.imshow(sliced_image)
    ax2.imshow(masked_image)
    
    plt.show()
    
    ######################################################################
    # For coloring multiple regions, you may also be interested in
    # `skimage.color.label2rgb <http://scikit-
    # image.org/docs/0.9.x/api/skimage.color.html#label2rgb>`_.
    

    figure 4

  • 相关阅读:
    @property
    UIViewController卸载过程(ios6.0以后)
    UIViewController卸载过程(ios6.0之前)
    UIViewController启动过程
    意淫原理,还是很有意思的
    协议
    多线程理解
    内存溢出与内存泄露
    jquery:实例方法
    计划,模型
  • 原文地址:https://www.cnblogs.com/wojianxin/p/12652734.html
Copyright © 2011-2022 走看看