zoukankan      html  css  js  c++  java
  • opencv kmeans聚类 图像色彩量化为例

    kmeans聚类实现灰度图像色彩量化(使用更少灰度值表示原灰度图像)

    # coding: utf-8
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    #读取原始图像灰度颜色
    img = cv2.imread('d:/paojie_g.jpg', 0) 
    #print(img.shape)
    
    #获取图像高度、宽度
    rows, cols = img.shape[:]
    
    #图像二维像素转换为一维
    data = img.reshape((rows * cols))
    data = np.float32(data)
    
    #定义中心 (type,max_iter,epsilon)
    criteria = (cv2.TERM_CRITERIA_EPS +
                cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    
    #设置标签
    flags = cv2.KMEANS_RANDOM_CENTERS
    
    #K-Means聚类 聚集成4类
    compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags)
    
    #生成最终图像
    res = centers[labels.flatten()]
    dst = res.reshape((img.shape[0],img.shape[1]))
    
    #用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei']
    
    #显示图像
    titles = [u'原始图像', u'聚类图像']  
    images = [img, dst]  
    for i in range(2):  
       plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'), 
       plt.title(titles[i])  
       plt.xticks([]),plt.yticks([])  
    plt.show()
    

    程序输出结果

    使用4种灰度值表示原图像

    kmeans聚类实现彩色图像色彩量化(使用更少色彩值表示原彩色图像)

    # coding: utf-8
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    #读取原始图像
    img = cv2.imread('d:paojie.png') 
    print(img.shape)
    
    #图像二维像素转换为一维
    data = img.reshape((-1,3))
    data = np.float32(data)
    
    #定义中心 (type,max_iter,epsilon)
    criteria = (cv2.TERM_CRITERIA_EPS +
                cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    
    #设置标签
    flags = cv2.KMEANS_RANDOM_CENTERS
    
    #K-Means聚类 聚集成2类
    compactness, labels2, centers2 = cv2.kmeans(data, 2, None, criteria, 10, flags)
    print('compactness:', compactness)
    print('labels2.shape:', labels2.shape)
    print('centers2.shape:', centers2.shape)
    print('labels2:
    ', labels2)
    print('centers2:
    ', centers2)
    
    #K-Means聚类 聚集成4类
    compactness, labels4, centers4 = cv2.kmeans(data, 4, None, criteria, 10, flags)
    
    #K-Means聚类 聚集成8类
    compactness, labels8, centers8 = cv2.kmeans(data, 8, None, criteria, 10, flags)
    
    #K-Means聚类 聚集成16类
    compactness, labels16, centers16 = cv2.kmeans(data, 16, None, criteria, 10, flags)
    
    #K-Means聚类 聚集成64类
    compactness, labels64, centers64 = cv2.kmeans(data, 64, None, criteria, 10, flags)
    
    #图像转换回uint8二维类型
    centers2 = np.uint8(centers2)
    res = centers2[labels2.flatten()]
    print('res:
    ', res)
    dst2 = res.reshape((img.shape))
    
    centers4 = np.uint8(centers4)
    res = centers4[labels4.flatten()]
    dst4 = res.reshape((img.shape))
    
    centers8 = np.uint8(centers8)
    res = centers8[labels8.flatten()]
    dst8 = res.reshape((img.shape))
    
    centers16 = np.uint8(centers16)
    res = centers16[labels16.flatten()]
    dst16 = res.reshape((img.shape))
    
    centers64 = np.uint8(centers64)
    res = centers64[labels64.flatten()]
    dst64 = res.reshape((img.shape))
    
    #图像转换为RGB显示
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
    dst4 = cv2.cvtColor(dst4, cv2.COLOR_BGR2RGB)
    dst8 = cv2.cvtColor(dst8, cv2.COLOR_BGR2RGB)
    dst16 = cv2.cvtColor(dst16, cv2.COLOR_BGR2RGB)
    dst64 = cv2.cvtColor(dst64, cv2.COLOR_BGR2RGB)
    
    #用来正常显示中文标签
    plt.rcParams['font.sans-serif']=['SimHei']
    
    #显示图像
    titles = [u'原始图像', u'聚类图像 K=2', u'聚类图像 K=4',
              u'聚类图像 K=8', u'聚类图像 K=16',  u'聚类图像 K=64']  
    images = [img, dst2, dst4, dst8, dst16, dst64]  
    for i in range(6):  
       plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'), 
       plt.title(titles[i])  
       plt.xticks([]),plt.yticks([])  
    plt.show()
    

    控制台输出

    控制台输出内容

    量化结果输出

    彩色图像色彩量化结果展示

  • 相关阅读:
    Android 请求运行时权限
    Android 调试技巧之快速重启生效
    ubuntu 用aptitude代替apt-get处理依赖性问题
    Learning Git by Animations
    Android调试技巧
    Android O PackageInstaller 解析
    阅读代码工具:Visual Studio Code
    Android 缓存策略demo
    |= 和 &= ~
    Android 逆向工具
  • 原文地址:https://www.cnblogs.com/wojianxin/p/12752251.html
Copyright © 2011-2022 走看看