给定一个数n(1 <= n <= 1e9),判断这个数是否是一个直角三角形的边长,如果是,则输出另外两条边(1 <= x <= 1e18),否则输出-1.
参考题解:http://blog.csdn.net/harlow_cheng/article/details/69055614
百度勾股数
首先,当n <= 2 的时候无解,其他时候都有解
假设n是直角边,a是斜边,则n^2 + b^2 = a^2;
n^2 = (a + b)*(a - b);
①假设n是偶数,则另(a - b) == 2;
==> a + b = (n ^ 2) / 2;
==> a* 2 = (n*n)/2 + 2;
==> a = n*n/4 + 1;
因为n是大于二的偶数,所以a有整数解,b = a- 2;
②假设n是偶数,则另(a - b) == 1;
==> a + b = (n ^ 2) ;
==> a* 2 = (n*n) + 1;
因为n是大于二的奇数,所以a有整数解,b = a- 1;
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 int main() 4 { 5 long long x; 6 cin >> x; 7 if(x <= 2){cout<<"-1"<<endl; return 0;} 8 if(x % 2) 9 { 10 long long a = (x * x + 1) / 2; 11 long long int b = a - 1; 12 cout << b << " " << a << endl; 13 } 14 else 15 { 16 long long int a = x * x / 4 + 1; 17 long long int b = a - 2; 18 cout << b << " " << a << endl; 19 } 20 return 0; 21 }
这是看完题解后补得题,惭愧,都说是大水题,还是没做出来,,,
看题的时候没法想到这方面,总是想着枚举暴力,懒,不愿动笔,这是一个大缺点,要改。!