zoukankan      html  css  js  c++  java
  • 《数据挖掘导论》实验课——实验三、数据挖掘之决策树

    实验三、数据挖掘之决策树

    一、实验目的

    1. 熟悉掌握决策树的原理,

    2. 熟练掌握决策树的生成方法与过程

    二、实验工具

    1. Anaconda

    2. sklearn

    3. pydotplus

    三、实验简介

    决策树是一个非参数的监督式学习方法,主要用于分类和回归。算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型。

    四、实验内容

    1. 自己创建至少2个向量,每个向量至少1个属性和1个类标号,根据向量生成决策树,并利用该决策树进行预测。如:

    from sklearn import tree X = [[0, 0], [1, 1]] Y = [0, 1] clf = tree.DecisionTreeClassifier() clf = clf.fit(X, Y) clf.predict([[2., 2.]]) clf.predict_proba([[2., 2.]]) #计算属于每个类的概率

    要求根据要求随机生成数据,并构建决策树,并举例预测。
    image.png

    2. 对鸢尾花数据构建决策树,

    (1) 调用数据的方法如下:

    from sklearn.datasets import load_iris iris = load_iris()# 从sklearn 数据集中获取鸢尾花数据。

    (2) 利用sklearn中的决策树方法对鸢尾花数据建立决策树
    (3) 为了能够直观看到建好的决策树,安装 pydotplus, 方法如下:

    pip install pydotplus

    pydotplus使用方法

    import pydotplus #引入pydotplus dot_data = tree.export_graphviz(clf, out_file=None) graph = pydotplus.graph_from_dot_data(dot_data) graph.write_pdf("iris.pdf")#将图写成pdf文件

    代码展示

    image.png

    决策树效果pdf

    image.png

    (4)(选做) 不使用sklearn中的决策树方法,自己编写决策树构建程序(建议用python语言),并对鸢尾花数据构建决策树。

    五、实验总结(写出本次实验的收获,遇到的问题等)

    通过本次实验,了解了Python中构建决策树的函数方法,并用鸢尾花数据集的可视化看到了生成的决策树效果图。困难在于不太理解决策时具体的构建过程,经过多次试验,自动构建的决策树和自己预测的规律结果是保持一致的,这说明了决策树的实用性。下一步应该学习理解自己构建出决策树。
  • 相关阅读:
    Software Architecture软件架构(方法、模式与框架)纵横谈
    SOLID: OOP的五大原则(译)
    《第一行代码》14章cool weather酷欧天气 网络请求相关问题
    前后端数据交互利器--Protobuf
    树状数组基础
    endless 如何实现不停机重启 Go 程序?
    fasthttp:比net/http快十倍的Go框架(server 篇)
    Mysql MVCC机制
    Docker构建mysql主从
    浅析b站2021/7/13日晚服务崩溃问题
  • 原文地址:https://www.cnblogs.com/wonker/p/11062683.html
Copyright © 2011-2022 走看看