Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
这题是看一个数能用几个不同二次方幂的数和表示
首先来练习一下深搜把,这一开始我没想到还能用深搜,尽管不对,当然可慢啦啦啦啦
#include<stdio.h>
#include<math.h>
#include<iostream>
using namespace std;
int ans;
long long p[50];
void dfs(int n,int last)
{
if(n==0)
{
ans++;
return;
}
for(int i=0;n-p[i]>=0;i++)
{
if(p[i]>=last)
dfs(n-p[i],p[i]);
}
}
int main()
{
int n;
for(int i=0;i<=49;i++)
p[i]=pow(2,i);
cin>>n;
dfs(n,0);
printf("%d",ans);
return 0;
}
接下来是dp版的,不知道为啥,还是超时!!!!,但思想要学习下,看懂下面的那个dp更新表就欧克了
dp表假设只有1,然后添加2,然后添加4然后添加8,更新表
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
long long dp[1000001],p[30];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
memset(dp,0,sizeof(dp));
p[0]=dp[0]=1;
for(int i=1;i<=29;i++)
{
p[i]=p[i-1]<<1;
}
for(int i=0;i<=29;i++)
{
if(p[i]<=n)
{
for(int j=p[i];j<=n;j++)
{
dp[j]=(dp[j]+dp[j-p[i]])%1000000000;
}
}
}
/*dp 1 2 3 4 5 6 7//假设输入7
1 1 1 1 1 1 1 1
2 2 2 3 3 4 4
4 4 4 6 6
*/
cout<<dp[n]<<endl;
}
}
最后过的是这个,我他喵。。。
#include<iostream>
#include<string.h>
using namespace std;
long long a[1000001];
int main()
{
int n;
a[1]=1,a[2]=2;
for(int i=3;i<1000001;i++)
{
a[i]=a[i-2]+a[i/2];
a[i]%=1000000000;
}
cin>>n;
cout<<a[n];
}
1.n为奇数,a[n]=a[n-1]
2.n为偶数:
(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];
(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n/2];
