zoukankan      html  css  js  c++  java
  • Pairs Forming LCM LightOJ

    Find the result of the following code:

    long long pairsFormLCM( int n ) {
        long long res = 0;
        for( int i = 1; i <= n; i++ )
            for( int j = i; j <= n; j++ )
               if( lcm(i, j) == n ) res++; // lcm means least common multiple
        return res;
    }

    A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

    Input

    Input starts with an integer T (≤ 200), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

    Output

    For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

    Sample Input

    15

    2

    3

    4

    6

    8

    10

    12

    15

    18

    20

    21

    24

    转https://www.cnblogs.com/shentr/p/5285407.html

    先来看个知识点:
    
    素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en
    
    for i in range(1,n):
    
            ei 从0取到ei的所有组合
    
    必能包含所有n的因子。
    
    现在取n的两个因子a,b
    
    a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an
    
    b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn
    
    gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)
    
    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)
    
    哈哈,又多了种求gcd,lcm的方法。
    
     
    
    题解:
    
    先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek,
    
    lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk)
    
    所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek
    
    当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。
    
    那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
    除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1 个
    
     
    
     
    
    复制代码
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    const int N=1e7+5;
    const int NN=1e6;
    unsigned int prime[NN],cnt;           //prime[N]会MLE
    bool vis[N];
    
    void is_prime()
    {
        cnt=0;
        memset(vis,0,sizeof(vis));
        for(int i=2;i<N;i++)
        {
            if(!vis[i])
            {
                prime[cnt++]=i;
                for(int j=i+i;j<N;j+=i)
                {
                    vis[j]=1;
                }
            }
        }
    }
    
    int main()
    {
        is_prime();
        int t;
        cin>>t;
        for(int kase=1;kase<=t;kase++)
        {
            LL n;
            cin>>n;
            int ans=1;
            for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++)
            {
                if(n%prime[i]==0)
                {
                    int e=0;
                    while(n%prime[i]==0)
                    {
                        n/=prime[i];
                        e++;
                    }
                    ans*=(2*e+1);
                }
            }
            if(n>1)
                ans*=(2*1+1);
            printf("Case %d: %d
    ",kase,(ans+1)/2);
        }
    }
    复制代码
  • 相关阅读:
    获得树形json串
    淘宝分布式 key/value 存储引擎Tair安装部署过程及Javaclient測试一例
    ARC下dealloc过程及.cxx_destruct的探究
    连类比事-category和extension
    category和关联对象
    静态构造函数c# 静态块java initallize oc
    + (void)initialize vs 静态构造方法
    Servlet中文乱码原因 解决 Get 和 Post 和客户端
    double int 类型的区别
    待解决问题 oc
  • 原文地址:https://www.cnblogs.com/wpbing/p/9516080.html
Copyright © 2011-2022 走看看