zoukankan      html  css  js  c++  java
  • 寻找hive视图

    如何hive视图

    1.mysql数据库

    [centos@s201 ~]$ mysql -uroot -proot
    
    mysql> show databases;
    +--------------------+
    | Database           |
    +--------------------+
    | information_schema |
    | azkaban            |
    | big12              |
    | hive               |
    | mysql              |
    | performance_schema |
    +--------------------+
    6 rows in set (0.05 sec)

    2.找hive库

     show databases;
    +--------------------+
    | Database           |
    +--------------------+
    | information_schema |
    | azkaban            |
    | big12              |
    | hive               |
    | mysql              |
    | performance_schema |
    +--------------------+
    
    mysql> use hive;

    3.观表

    show tables;
    +---------------------------+
    | Tables_in_hive            |
    +---------------------------+
    | AUX_TABLE                 |
    | BUCKETING_COLS            |
    | CDS                       |
    | COLUMNS_V2                |
    | COMPACTION_QUEUE          |
    | COMPLETED_COMPACTIONS     |
    | COMPLETED_TXN_COMPONENTS  |
    | DATABASE_PARAMS           |
    | DBS                       |
    | DB_PRIVS                  |
    | DELEGATION_TOKENS         |
    | FUNCS                     |
    | FUNC_RU                   |
    | GLOBAL_PRIVS              |
    | HIVE_LOCKS                |
    | IDXS                      |
    | INDEX_PARAMS              |
    | KEY_CONSTRAINTS           |
    | MASTER_KEYS               |
    | NEXT_COMPACTION_QUEUE_ID  |
    | NEXT_LOCK_ID              |
    | NEXT_TXN_ID               |
    | NOTIFICATION_LOG          |
    | NOTIFICATION_SEQUENCE     |
    | NUCLEUS_TABLES            |
    | PARTITIONS                |
    | PARTITION_EVENTS          |
    | PARTITION_KEYS            |
    | PARTITION_KEY_VALS        |
    | PARTITION_PARAMS          |
    | PART_COL_PRIVS            |
    | PART_COL_STATS            |
    | PART_PRIVS                |
    | ROLES                     |
    | ROLE_MAP                  |
    | SDS                       |
    | SD_PARAMS                 |
    | SEQUENCE_TABLE            |
    | SERDES                    |
    | SERDE_PARAMS              |
    | SKEWED_COL_NAMES          |
    | SKEWED_COL_VALUE_LOC_MAP  |
    | SKEWED_STRING_LIST        |
    | SKEWED_STRING_LIST_VALUES |
    | SKEWED_VALUES             |
    | SORT_COLS                 |
    | TABLE_PARAMS              |
    | TAB_COL_STATS             |
    | TBLS                      |
    | TBL_COL_PRIVS             |
    | TBL_PRIVS                 |
    | TXNS                      |
    | TXN_COMPONENTS            |
    | TYPES                     |
    | TYPE_FIELDS               |
    | VERSION                   |
    | WRITE_SET                 |
    +---------------------------+

    4.TBLS表结构

    mysql> desc TBLS;
    +--------------------+--------------+------+-----+---------+-------+
    | Field              | Type         | Null | Key | Default | Extra |
    +--------------------+--------------+------+-----+---------+-------+
    | TBL_ID             | bigint(20)   | NO   | PRI | NULL    |       |
    | CREATE_TIME        | int(11)      | NO   |     | NULL    |       |
    | DB_ID              | bigint(20)   | YES  | MUL | NULL    |       |
    | LAST_ACCESS_TIME   | int(11)      | NO   |     | NULL    |       |
    | OWNER              | varchar(767) | YES  |     | NULL    |       |
    | RETENTION          | int(11)      | NO   |     | NULL    |       |
    | SD_ID              | bigint(20)   | YES  | MUL | NULL    |       |
    | TBL_NAME           | varchar(128) | YES  | MUL | NULL    |       |
    | TBL_TYPE           | varchar(128) | YES  |     | NULL    |       |
    | VIEW_EXPANDED_TEXT | mediumtext   | YES  |     | NULL    |       |
    | VIEW_ORIGINAL_TEXT | mediumtext   | YES  |     | NULL    |       |
    +--------------------+--------------+------+-----+---------+-------+

    5.根据TBL_TYPE找到视图

    mysql> select * from TBLS where tbl_type='VIRTUAL_VIEW';
    +--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
    | TBL_ID | CREATE_TIME | DB_ID | LAST_ACCESS_TIME | OWNER  | RETENTION | SD_ID | TBL_NAME | TBL_TYPE     | VIEW_EXPANDED_TEXT                                                                                                                                                                                                                    | VIEW_ORIGINAL_TEXT                                                                                                                        |
    +--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
    |    187 |  1544269997 |     6 |                0 | centos |         0 |   222 | a        | VIRTUAL_VIEW | select `a`.`id`, `a`.`tag`, count(*) as `count` from (select `temptags`.`id`,  `xx`.`tag` from `big12`.`temptags` lateral view explode(`parsejson`(`temptags`.`json`)) `xx` as `tag`) `a` group by `a`.`id`, `a`.`tag`                | select id, tag, count(*) as count from (select id,  tag from temptags lateral view explode(parsejson(json)) xx as tag) a group by id, tag |
    |    193 |  1544336757 |     6 |                0 | centos |         0 |   229 | a1       | VIRTUAL_VIEW | select `logevent`.`deviceid`, `logevent`.`musicid`, sum(cast(`logevent`.`mark` as int)) as `sum` from `big12`.`logevent` where `logevent`.`musicid` is not null group by `logevent`.`deviceid`, `logevent`.`musicid`                  | select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid                |
    |    194 |  1544336831 |     6 |                0 | centos |         0 |   230 | a2       | VIRTUAL_VIEW | select
    `a1`.`deviceid` ,
    `a1`.`musicid`,
    `a1`.`sum`,
    max(`a1`.`sum`)over(partition by `a1`.`deviceid`) as `sum2`
    from `big12`.`a1`                                                                                               | select
    deviceid ,
    musicid,
    sum,
    max(sum)over(partition by deviceid) as sum2
    from a1                                                  |
    |    227 |  1550817816 |     6 |                0 | centos |         0 |   262 | zz1      | VIRTUAL_VIEW | select `duowan_parquet`.`id`, `duowan_parquet`.`name`, `duowan_parquet`.`pass`, `duowan_parquet`.`email`, `duowan_parquet`.`nickname` from `big12`.`duowan_parquet` where substring(`duowan_parquet`.`id`,1,1) in (1,2,3,4,5,6,8,9,0) | select * from duowan_parquet where substring(id,1,1) in (1,2,3,4,5,6,8,9,0)                                                               |
    +--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+

     6.查看存储库信息的DBS表

    mysql> desc DBS;
    +-----------------+---------------+------+-----+---------+-------+
    | Field           | Type          | Null | Key | Default | Extra |
    +-----------------+---------------+------+-----+---------+-------+
    | DB_ID           | bigint(20)    | NO   | PRI | NULL    |       |
    | DESC            | varchar(4000) | YES  |     | NULL    |       |
    | DB_LOCATION_URI | varchar(4000) | NO   |     | NULL    |       |
    | NAME            | varchar(128)  | YES  | UNI | NULL    |       |
    | OWNER_NAME      | varchar(128)  | YES  |     | NULL    |       |
    | OWNER_TYPE      | varchar(10)   | YES  |     | NULL    |       |
    +-----------------+---------------+------+-----+---------+-------+
     select * from  DBS limit 10;
    +-------+-----------------------+------------------------------------------------+-------------+------------+------------+
    | DB_ID | DESC                  | DB_LOCATION_URI                                | NAME        | OWNER_NAME | OWNER_TYPE |
    +-------+-----------------------+------------------------------------------------+-------------+------------+------------+
    |     1 | Default Hive database | hdfs://s201/user/hive/warehouse                | default     | public     | ROLE       |
    |     6 | NULL                  | hdfs://s201/user/hive/warehouse/big12.db       | big12       | centos     | USER       |
    |    11 | NULL                  | hdfs://s201/user/hive/warehouse/music164.db    | music164    | centos     | USER       |
    |    16 | NULL                  | hdfs://s201/user/hive/warehouse/big12_umeng.db | big12_umeng | centos     | USER       |
    |    21 | NULL                  | hdfs://s201/user/hive/warehouse/big12_2.db     | big12_2     | centos     | USER       |
    |    26 | NULL                  | hdfs://s201/user/hive/warehouse/iml.db         | iml         | centos     | USER       |
    |    31 | NULL                  | hdfs://s201/user/hive/warehouse/wqbin.db       | wqbin       | centos     | USER       |
    +-------+-----------------------+------------------------------------------------+-------------+------------+------------+

    7.如何删除视图跑路的脚本如下

    7.1连接mysql

    import pymysql
    
    conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
    cur = conn.cursor()
    
    # 查询
    sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID "
    reCount = cur.execute(sql)  # 返回受影响的行数
    print(reCount)
    data = cur.fetchall()  # 返回数据,返回的是tuple类型
    print(data)
    
    
    cur.close()
    conn.close()

    (('big12', 'a'), ('big12', 'a1'), ('big12', 'a2'), ('big12', 'zz1'))

    7.2删除hive视图

    使用pyhive连接hive删除所有视图

    import pymysql
    conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
    cur = conn.cursor()
    # 查询
    sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID where a.TBL_TYPE='VIRTUAL_VIEW'"
    reCount = cur.execute(sql)  # 返回受影响的行数
    data = cur.fetchall()  # 返回数据,返回的是tuple类型
    print(data)
    cur.close()
    conn.close()
    
    from pyhive import hive
    import thrift
    import sasl
    import thrift_sasl
    conn = hive.Connection(host='192.168.154.201', port=10000, database='big12',auth='NOSASL')
    cursor=conn.cursor()
    for a,b in data:
        cursor.execute("drop view "+a+"."+b)
    conn.close()
  • 相关阅读:
    初识函数作业
    HTTP协议那些事儿(Web开发补充知识点)
    文件操作
    文件操作作业
    深浅拷贝
    深浅拷贝作业
    小数据池 is和== 再谈编码
    小数据池/is和==/再谈编码作业
    如何用好 github 中的 watch、star、fork
    Navicat Premium Mac 12 破解(亲测可用!!!)
  • 原文地址:https://www.cnblogs.com/wqbin/p/10515326.html
Copyright © 2011-2022 走看看