zoukankan      html  css  js  c++  java
  • OpenCV】透视变换 Perspective Transformation(续)

    【OpenCV】透视变换 Perspective Transformation(续)

    分类: 【图像处理】 【编程语言】

    透视变换的原理和矩阵求解请参见前一篇《透视变换 Perspective Transformation》。在OpenCV中也实现了透视变换的公式求解和变换函数。

    求解变换公式的函数:

    1. Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[])  
    Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[])
    输入原始图像和变换之后的图像的对应4个点,便可以得到变换矩阵。之后用求解得到的矩阵输入perspectiveTransform便可以对一组点进行变换:
    1. void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)  
    void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)
    注意这里src和dst的输入并不是图像,而是图像对应的坐标。应用前一篇的例子,做个相反的变换:
    1. int main( )  
    2. {  
    3.     Mat img=imread("boy.png");  
    4.     int img_height = img.rows;  
    5.     int img_width = img.cols;  
    6.     vector<Point2f> corners(4);  
    7.     corners[0] = Point2f(0,0);  
    8.     corners[1] = Point2f(img_width-1,0);  
    9.     corners[2] = Point2f(0,img_height-1);  
    10.     corners[3] = Point2f(img_width-1,img_height-1);  
    11.     vector<Point2f> corners_trans(4);  
    12.     corners_trans[0] = Point2f(150,250);  
    13.     corners_trans[1] = Point2f(771,0);  
    14.     corners_trans[2] = Point2f(0,img_height-1);  
    15.     corners_trans[3] = Point2f(650,img_height-1);  
    16.   
    17.     Mat transform = getPerspectiveTransform(corners,corners_trans);  
    18.     cout<<transform<<endl;  
    19.     vector<Point2f> ponits, points_trans;  
    20.     for(int i=0;i<img_height;i++){  
    21.         for(int j=0;j<img_width;j++){  
    22.             ponits.push_back(Point2f(j,i));  
    23.         }  
    24.     }  
    25.   
    26.     perspectiveTransform( ponits, points_trans, transform);  
    27.     Mat img_trans = Mat::zeros(img_height,img_width,CV_8UC3);  
    28.     int count = 0;  
    29.     for(int i=0;i<img_height;i++){  
    30.         uchar* p = img.ptr<uchar>(i);  
    31.         for(int j=0;j<img_width;j++){  
    32.             int y = points_trans[count].y;  
    33.             int x = points_trans[count].x;  
    34.             uchar* t = img_trans.ptr<uchar>(y);  
    35.             t[x*3]  = p[j*3];  
    36.             t[x*3+1]  = p[j*3+1];  
    37.             t[x*3+2]  = p[j*3+2];  
    38.             count++;  
    39.         }  
    40.     }  
    41.     imwrite("boy_trans.png",img_trans);  
    42.   
    43.     return 0;  
    44. }  
    int main( )
    {
    	Mat img=imread("boy.png");
    	int img_height = img.rows;
    	int img_width = img.cols;
    	vector<Point2f> corners(4);
    	corners[0] = Point2f(0,0);
    	corners[1] = Point2f(img_width-1,0);
    	corners[2] = Point2f(0,img_height-1);
    	corners[3] = Point2f(img_width-1,img_height-1);
    	vector<Point2f> corners_trans(4);
    	corners_trans[0] = Point2f(150,250);
    	corners_trans[1] = Point2f(771,0);
    	corners_trans[2] = Point2f(0,img_height-1);
    	corners_trans[3] = Point2f(650,img_height-1);
    
    	Mat transform = getPerspectiveTransform(corners,corners_trans);
    	cout<<transform<<endl;
    	vector<Point2f> ponits, points_trans;
    	for(int i=0;i<img_height;i++){
    		for(int j=0;j<img_width;j++){
    			ponits.push_back(Point2f(j,i));
    		}
    	}
    
    	perspectiveTransform( ponits, points_trans, transform);
    	Mat img_trans = Mat::zeros(img_height,img_width,CV_8UC3);
    	int count = 0;
    	for(int i=0;i<img_height;i++){
    		uchar* p = img.ptr<uchar>(i);
    		for(int j=0;j<img_width;j++){
    			int y = points_trans[count].y;
    			int x = points_trans[count].x;
    			uchar* t = img_trans.ptr<uchar>(y);
    			t[x*3]  = p[j*3];
    			t[x*3+1]  = p[j*3+1];
    			t[x*3+2]  = p[j*3+2];
    			count++;
    		}
    	}
    	imwrite("boy_trans.png",img_trans);
    
    	return 0;
    }

    得到变换之后的图片:

    注意这种将原图变换到对应图像上的方式会有一些没有被填充的点,也就是右图中黑色的小点。解决这种问题一是用差值的方式,再一种比较简单就是不用原图的点变换后对应找新图的坐标,而是直接在新图上找反向变换原图的点。说起来有点绕口,具体见前一篇《透视变换 Perspective Transformation》的代码应该就能懂啦。

    除了getPerspectiveTransform()函数,OpenCV还提供了findHomography()的函数,不是用点来找,而是直接用透视平面来找变换公式。这个函数在特征匹配的经典例子中有用到,也非常直观:

    1. int main( int argc, char** argv )  
    2. {  
    3.     Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );  
    4.     Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );  
    5.     if( !img_object.data || !img_scene.data )  
    6.     { std::cout<< " --(!) Error reading images " << std::endl; return -1; }  
    7.   
    8.     //-- Step 1: Detect the keypoints using SURF Detector   
    9.     int minHessian = 400;  
    10.     SurfFeatureDetector detector( minHessian );  
    11.     std::vector<KeyPoint> keypoints_object, keypoints_scene;  
    12.     detector.detect( img_object, keypoints_object );  
    13.     detector.detect( img_scene, keypoints_scene );  
    14.   
    15.     //-- Step 2: Calculate descriptors (feature vectors)   
    16.     SurfDescriptorExtractor extractor;  
    17.     Mat descriptors_object, descriptors_scene;  
    18.     extractor.compute( img_object, keypoints_object, descriptors_object );  
    19.     extractor.compute( img_scene, keypoints_scene, descriptors_scene );  
    20.   
    21.     //-- Step 3: Matching descriptor vectors using FLANN matcher   
    22.     FlannBasedMatcher matcher;  
    23.     std::vector< DMatch > matches;  
    24.     matcher.match( descriptors_object, descriptors_scene, matches );  
    25.     double max_dist = 0; double min_dist = 100;  
    26.   
    27.     //-- Quick calculation of max and min distances between keypoints   
    28.     for( int i = 0; i < descriptors_object.rows; i++ )  
    29.     { double dist = matches[i].distance;  
    30.     if( dist < min_dist ) min_dist = dist;  
    31.     if( dist > max_dist ) max_dist = dist;  
    32.     }  
    33.   
    34.     printf("-- Max dist : %f  ", max_dist );  
    35.     printf("-- Min dist : %f  ", min_dist );  
    36.   
    37.     //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )   
    38.     std::vector< DMatch > good_matches;  
    39.   
    40.     for( int i = 0; i < descriptors_object.rows; i++ )  
    41.     { if( matches[i].distance < 3*min_dist )  
    42.     { good_matches.push_back( matches[i]); }  
    43.     }  
    44.   
    45.     Mat img_matches;  
    46.     drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,  
    47.         good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),  
    48.         vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );  
    49.   
    50.     //-- Localize the object from img_1 in img_2   
    51.     std::vector<Point2f> obj;  
    52.     std::vector<Point2f> scene;  
    53.   
    54.     for( size_t i = 0; i < good_matches.size(); i++ )  
    55.     {  
    56.         //-- Get the keypoints from the good matches   
    57.         obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );  
    58.         scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );  
    59.     }  
    60.   
    61.     Mat H = findHomography( obj, scene, RANSAC );  
    62.   
    63.     //-- Get the corners from the image_1 ( the object to be "detected" )   
    64.     std::vector<Point2f> obj_corners(4);  
    65.     obj_corners[0] = Point(0,0); obj_corners[1] = Point( img_object.cols, 0 );  
    66.     obj_corners[2] = Point( img_object.cols, img_object.rows ); obj_corners[3] = Point( 0, img_object.rows );  
    67.     std::vector<Point2f> scene_corners(4);  
    68.     perspectiveTransform( obj_corners, scene_corners, H);  
    69.     //-- Draw lines between the corners (the mapped object in the scene - image_2 )   
    70.     Point2f offset( (float)img_object.cols, 0);  
    71.     line( img_matches, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4 );  
    72.     line( img_matches, scene_corners[1] + offset, scene_corners[2] + offset, Scalar( 0, 255, 0), 4 );  
    73.     line( img_matches, scene_corners[2] + offset, scene_corners[3] + offset, Scalar( 0, 255, 0), 4 );  
    74.     line( img_matches, scene_corners[3] + offset, scene_corners[0] + offset, Scalar( 0, 255, 0), 4 );  
    75.   
    76.     //-- Show detected matches   
    77.     imshow( "Good Matches & Object detection", img_matches );  
    78.     waitKey(0);  
    79.     return 0;  
    80. }  
    int main( int argc, char** argv )
    {
    	Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
    	Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );
    	if( !img_object.data || !img_scene.data )
    	{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
    
    	//-- Step 1: Detect the keypoints using SURF Detector
    	int minHessian = 400;
    	SurfFeatureDetector detector( minHessian );
    	std::vector<KeyPoint> keypoints_object, keypoints_scene;
    	detector.detect( img_object, keypoints_object );
    	detector.detect( img_scene, keypoints_scene );
    
    	//-- Step 2: Calculate descriptors (feature vectors)
    	SurfDescriptorExtractor extractor;
    	Mat descriptors_object, descriptors_scene;
    	extractor.compute( img_object, keypoints_object, descriptors_object );
    	extractor.compute( img_scene, keypoints_scene, descriptors_scene );
    
    	//-- Step 3: Matching descriptor vectors using FLANN matcher
    	FlannBasedMatcher matcher;
    	std::vector< DMatch > matches;
    	matcher.match( descriptors_object, descriptors_scene, matches );
    	double max_dist = 0; double min_dist = 100;
    
    	//-- Quick calculation of max and min distances between keypoints
    	for( int i = 0; i < descriptors_object.rows; i++ )
    	{ double dist = matches[i].distance;
    	if( dist < min_dist ) min_dist = dist;
    	if( dist > max_dist ) max_dist = dist;
    	}
    
    	printf("-- Max dist : %f 
    ", max_dist );
    	printf("-- Min dist : %f 
    ", min_dist );
    
    	//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
    	std::vector< DMatch > good_matches;
    
    	for( int i = 0; i < descriptors_object.rows; i++ )
    	{ if( matches[i].distance < 3*min_dist )
    	{ good_matches.push_back( matches[i]); }
    	}
    
    	Mat img_matches;
    	drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
    		good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
    		vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
    
    	//-- Localize the object from img_1 in img_2
    	std::vector<Point2f> obj;
    	std::vector<Point2f> scene;
    
    	for( size_t i = 0; i < good_matches.size(); i++ )
    	{
    		//-- Get the keypoints from the good matches
    		obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
    		scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
    	}
    
    	Mat H = findHomography( obj, scene, RANSAC );
    
    	//-- Get the corners from the image_1 ( the object to be "detected" )
    	std::vector<Point2f> obj_corners(4);
    	obj_corners[0] = Point(0,0); obj_corners[1] = Point( img_object.cols, 0 );
    	obj_corners[2] = Point( img_object.cols, img_object.rows ); obj_corners[3] = Point( 0, img_object.rows );
    	std::vector<Point2f> scene_corners(4);
    	perspectiveTransform( obj_corners, scene_corners, H);
    	//-- Draw lines between the corners (the mapped object in the scene - image_2 )
    	Point2f offset( (float)img_object.cols, 0);
    	line( img_matches, scene_corners[0] + offset, scene_corners[1] + offset, Scalar(0, 255, 0), 4 );
    	line( img_matches, scene_corners[1] + offset, scene_corners[2] + offset, Scalar( 0, 255, 0), 4 );
    	line( img_matches, scene_corners[2] + offset, scene_corners[3] + offset, Scalar( 0, 255, 0), 4 );
    	line( img_matches, scene_corners[3] + offset, scene_corners[0] + offset, Scalar( 0, 255, 0), 4 );
    
    	//-- Show detected matches
    	imshow( "Good Matches & Object detection", img_matches );
    	waitKey(0);
    	return 0;
    }

    代码运行效果:

    findHomography()函数直接通过两个平面上相匹配的特征点求出变换公式,之后代码又对原图的四个边缘点进行变换,在右图上画出对应的矩形。这个图也很好地解释了所谓透视变换的“Viewing Plane”。

  • 相关阅读:
    [原创]存储过程,insert,case when then,处理性别问题 Virus
    [原创]c#,数据结构,栈 Virus
    [原创]软件自动化测试和.NET中的反射 Virus
    [原创]反射,.NET,委托 Virus
    《博客园精华集--NET3.x分册》第三轮结果
    (翻译)《Expert .NET 2.0 IL Assembler》 详要目录 更新到第8章
    MSIL翻译中的问题贴
    (翻译)《Expert .NET 2.0 IL Assembler》 第一章 简单示例 1.2 简单示例(二)
    (翻译)《Expert .NET 2.0 IL Assembler》 第一章 简单示例 1.2 简单示例(一)
    第三轮进度汇总
  • 原文地址:https://www.cnblogs.com/wqj1212/p/3915887.html
Copyright © 2011-2022 走看看